COURSE LAYOUT

1.	GENERAL					
	SCHOOL	APPLIED BIOLOGY AND BIOTECHNOLOGY				
	DEPARTMENT	BIOTECHNOLOGY				
	STUDY LEVEL	Undergraduate				
	COURSE CODE	1405	SEMESTER 5th			
	COURSE TITLE	MOLECULAR RECOGNITION				
	INDEPENDENT TEACHI		WEEKLY TEACHING HOURS		ECTS	
		3		0,12		
	PRACTICAL EXERCISES			2		0,08
	ESSAYS			1		0,04
	TOTAL ECTS (Table 4)					5,00
	COURSE TYPE	Specialization and Development of Professional Skills				
	PREREQUISITES	No				
	LANGUAGE	Greek with English support in terminology				
	IS THE COURSE OFFERED	YES (in Greek)				
	forERASMUS STUDENTS?					
	COURSE WEB PAGE	https://mediasrv.aua.gr/eclass/courses/BIOTECH144/				
		http//eclass.geneticslab.gr				

2. LEARNING OUTCOMES

Learning Outcomes

The course is an introduction to the interaction and molecular recognition between biomolecules.

On completion the student will be capable of:

- Have basic knowledge of the structural units forming biomolecules
- Be able to quantify biomolecular interactions and recognition
- Have knowledge of techniques and methodology used for the quantification of interactions between biomolecules
- Have knowledge of the processes and players at molecular level for chemical signal transduction
- Have knowledge of processes and methodology for drug design
- Have knowledge of protein folding mechanisms and their cellular translocation
- Using molecular modeling software on computer and construct and analyze biomolecules.
- Compiling reports and analyzing results that arise from the study of structural elements
 of biomolecules and enhance his/her ability for on line query of electronic libraries and
 scientific journals.

General Competenses

- Search, analysis and synthesis of data and information with the use of necessary technologies
- Adaptation to new conditions
- Decision making
- Group and autonomous work

- Generation of new research ideas
- Planning and Managing projects
- Advance of free, fresh and logical thinking

3. COURSE CONTENT

I. GENERAL PRINCIPLES

1. Structural elements of biomolecules (amino acids, bases, additive biomolecules, proteins, nuclear acids).

- 2. Types of interactions involved in recognition (qualitative and quantitative analysis).
- a. Interactions between individual atoms.
- b. Interactions of structural elements of molecules.
- 3. Energy interaction analysis.
 - a. Molecular Engineering
 - b. Molecular Dynamics.
- 4. Recognition levels, high fidelity recognition.
 - a. Definition of Molecular Recognition.
 - b. The contribution of individual interactions to recognition.
- j. Hydrogen bonds.
- ii. Electrostatic interactions.
- iii. Stereotypical obstruction.
 - c. General internal stabilization methodology. electric cargo.
- 5. Protein recognition areas.
- a. Grades of recognition, high fidelity recognition.
- b. Size and complexity of areas of recognition.
- c. Structural elements
- d. The position of the substrate.
- 6. Size and complexity of recognition areas.

II. CHEMICAL TRANSFER TRANSPORTATION AND INTERVENTION OF CELLS

- 1. Common molecular mechanisms for signal transduction.
 - a. Mechanisms
 - b. Active groups.
- 2. Hormones, neurotransmitters, local chemical mediators.
- 3. Signal transmission to membranes and cytoplasm.
- 4. Steroid hormones and their receptors. Pheromones
- 5. Structure of membrane proteins. Channels and receivers.

III. APPLICATIONS IN BIOTECHNOLOGY

- 1. Rational drug design.
- 2. Creation of antibodies against viruses and bacteria.
- 3. Insecticides-Pesticides. Biochemical processes.
- 4. Explain important plant processes at the molecular level.
 - a. Movement of ions in plants.
 - b. Photosynthesis.
 - c. The movement in the plants.
- 5. Antibody design against virii and bacteria.
- 6.Steroid hormones and their receptors.

IV. LABORATORY: Amino acids and protein stereotypes. Molecular identification of nuclear acids. Membrane proteins. Hemoglobin. Proteolytic enzymes - Molecular action. Substrate design. The molecular action of insecticides.

. TEACHING and LEARNING METHODS - Evaluation						
TEACHING METHOD	In suitably equipped teaching rooms. Distant Learning					
USE OF INFORMATICS and	The course is completely computerised in the form of					
COMMUNICATION TECHNOLOGIES	Powerpoint, Web linking, etc.					
	Computer programmes and appilications are taught					
	and distributed to students, for the analysis of financial					
	information.					
	The support of learning process and the necessary					
	materials are facilitated by the electronic, web based					
	e-class platform (<u>http://geneticslab.gr</u>).					
TEACHING ORGANISATION	Activity	Work Load				
	Lectures (direct)	39 h				
	Laboratory work	26 h				
	Group and/or individual	13 h				
	works					
	Autonomous study	47 h				
	Total contact hours and	125 h				
	iraining	(5 EC13)				
STODENTS EVALUATION	I. Written final examination (40%) of different					
	difficulty, based on the lectures offered, containing:					
	- Questions of multiple choice.					
	- Questions of theoretical knowledge.					
	- Problems based on lecture material.					
	II. Laboratory exercises/practicals (30%).					
	III. Group and small autonomous works (20%).					
	IV. Internet questions (10%)					

5. **BIBILIOGRAPHY**

Introduction to Protein Structure (Branden&Tooze) (1991). Garland Publishing Inc, ISBN 0-8153-0270-3 Biochemistry (LubertStryer) (Fourth Edition 1995) W.H.Freeman and Co. ISBN 0-7167-2009-4 Βιοχημεία (Stryer) Ελληνική Μετάφραση Τομος Ι και ΙΙ (1994) Πανεπ. Εκδ. Κρήτης. Communication within Animal Cells Greg J.Baritt , Oxford Science Pubs.1992 ISBN 0-19-854726-9 Plant Biochemistry and Molecular Biology Hans-Walter Heldt, Oxford Pubs. 1997 ISBN 0-19-850179-X Molecular Plant Development PeterWesthoff, Oxford Pubs. 1998 ISBN 0-19-850203-6 Proteins: Form and Function (Bradshaw & Purton Eds.) (1990). Elsevier Trends Books ISBN 1 85166 512 9 BioEnergetics (Albert Lehninger) (1973). The Benjamin/Cummings Publishing Company ISBN 0-8053-6103-0 Chemical Communication: The Language of Pheromones (Agosta) (1992). Life Processes of Plants (Galston) (1994).