COURSE LAYOUT

1. GENERAL

SCHOOL	APPLIED BIOLOGY & BIOTECHNOLOGY				
DEPARTMENT	BIOTECHNOLOGY				
STUDY LEVEL	Undergraduate				
COURSE CODE	1405 SEMESTER 5 th				
COURSE TITLE	Molecular Recognition				
INDEPENDENT TEACHIN	INDEPENDENT TEACHING ACTIVITIES			NG	ECTS
		3		1.56	
Laboratory exercises			2		0.56
Group and/or individual assignments					0.82
	Independent study				2.06
TOTAL					5
COURSE TYPE	Background				
PREREQUISITES	No, but knowledge of Biochemistry is highly				
	recommended				
LANGUAGE	Greek with English support in terminology				
IS THE COURSE OFFERED for	YES (in Greek)				
ERASMUS STUDENTS?					
COURSE WEB PAGE	https://oeclass.aua.gr/eclass/courses/BIOTECH139/				

2. LEARNING OUTCOMES

Learning Outcomes

Upon successful completion of the course, the student will:

- Has knowledge of the basic structural units that make up biomolecules.
- Can perceive and quantify interactions between biomolecules (protein-protein and protein-DNA) at the molecular level.
- Has knowledge of the methods and techniques used to quantify the interactions between biomolecules on a molecular scale.
- Has knowledge of the basic principles governing the methods of determining the structure of biomolecules.
- Has knowledge of protein folding mechanisms.
- Has knowledge of the mechanisms that govern protein translocation.
- Has knowledge of the molecular scale processes and actors for signal transduction.
- Has knowledge of the mechanisms of recognition of elements of the immune system at the molecular level.
- Has knowledge of processes and methods for drug design.
- Be able to operate molecular graphics programs on the PC and construct and analyze biomolecules.
- Be able to compose papers and analyze results obtained from the study of structural elements of biomolecules and develop the ability for on-line access to libraries and scientific journals.

General Competences

- 1. Search and analysis of data and information using the necessary technologies.
- 2. Adaptation to new situations.

- 3. Decision making.
- 4. Autonomous work.
- 5. Group work.
- 6. Generation of new research ideas.
- 7. Project planning and management.
- 8. Promotion of free, creative and inductive thinking.

3. COURSE CONTENT

I. GENERAL PRINCIPLES.

- 1. Structural elements of biomolecules (amino acids, nucleotides, cofactors, proteins, nucleic acids).
- 2. Types of interactions involved in recognition (qualitative and quantitative analysis). Degrees of recognition.
- a. Atomic interactions (H-bonds, electrostatic interactions, Van der Waals, hydrophobicity, π - π , cation- π , halogen bonds, steric hindrance, stabilization of internal charges).
- b. Interactions of building blocks of molecules.
- 3. Energy analysis of interactions.
- a. Molecular Engineering
- b. Molecular Dynamics.
- 4. Protein recognition regions.
- a. Structural elements
- b. The location of the substrate.
- 5. Size and complexity of identification areas.
- 6. Basic principles of high-resolution structure determination methods (X-ray crystallography, NMR, cryo-electron microscopy)
- II. PROTEIN FOLDING AND PROTEIN TRANSLOCATION
- 7. The thermodynamics of protein folding
- 8. Folding mechanisms in the cell (cytoplasm, endoplasmic reticulum)
- 9. Mechanisms of protein translocation to their final destination (nucleus, endoplasmic reticulum, mitochondrion, lysosome, secretion)
- III. CHEMICAL SIGNAL TRANSDUCTION, INTRACELLULAR AND BETWEEN CELLS
- 10. Hormones, neurotransmitters.
- 11. Common molecular mechanisms for signal transduction.
- a. Slow-fast signaling.
- b. Signal initiation and termination.
- 12. GPCRs, G-proteins, kinase cascade. Structural view of signaling.
- 13. Recognition between immune molecules (molecular/structural view)
- a. Antibody-antigen recognition
- b. Antigen presentation by MHC-I and MHC-II molecules.
- IV. STRUCTURE-BASED DRUG DESIGN
- 14. Libraries of small molecules (fragments, lead-compounds, drug-like molecules).
- 15. Docking of small molecules in protein cavities.
- 16. Evaluation of results.
- 17. Application of structural data for the development of new, effective and selective drugs.

V. LABORATORY

- 1. Amino acids and protein structure.
- 2. Molecular identification of proteins (transcription factors)-DNA.
- 3. Membrane proteins.
- 4. Hemoglobin structural changes and synergistic effect, allosteric modifiers
- 5. Proteolytic enzymes molecular action.

- 6. Design of enzyme inhibitors
- 7. The molecular action of insecticides.

4. TEACHING and LEARNING METHODS - Evaluation

TEACHING and LEAKING WETTOODS - Evaluation					
TEACHING METHOD	In suitably equipped teaching rooms				
LICE OF INFORMATIOS and					
USE OF INFORMATICS and	Use of powerpoint presentations in lectures, use of e-				
COMMUNICATION TECHNOLOGIES	class website and videos to inform, distribution of				
	educational material, delivery & grading of laboratory				
	exercises, molecular graphics software				
TEACHING ORGANISATION	Activity	Work Load			
	Lectures	39			
	Laboratory exercises	14			
	Group and/or individual	20.5			
	assignments				
	Independent study	51.5			
	Course total				
	(25 hours of student	125			
	work load per ECTS)				
STUDENTS EVALUATION	I. Written final exam on theory (50%), which includes:				
	Multiple choice questions.				
	 Questions of short and/or detailed development. 				
	Problems/exercises based on theoretical knowledge				
	developed in the lectures.				
	actions post in the rectances				
	II. Written final exam on laboratory exercises (40%),				
	which includes:				
	Multiple choice questions.				
	 Questions of short and/or detailed development. 				
	- Questions of short analytic detailed development.				
	III. Individual Assignments (10%)				
	m. marvidaa Assigiments (1070)				

5. **BIBILIOGRAPHY**

- 1. Introduction to protein structure (Branden & Tooze) (1999). Garland Publishing Inc, ISBN 0-8153-0270-3
- 2. Biochemistry (Stryer) (2015) Broken Hill Publishers.
- 3. The cell, a molecular approach G.M. Cooper and R.E. Hausman, Eds, 2009, Sinauer Assosciates, Inc. Publishing, USA
- 4. Communication within Animal Cells Greg J.Baritt , Oxford Science Pubs.1992 ISBN 0-19-854726-9
- 5. Plant Biochemistry and Molecular Biology Hans-Walter Heldt, Oxford Pubs. 1997 ISBN 0-19-850179-X
- 6. Proteins: Form and Function (Bradshaw & Purton Eds.) (1990). Elsevier Trends Books ISBN 1 85166 512 9

Chemical Communication: The Language of Pheromones (Agosta) (1992)