COURSE OUTLINE

1. GENERAL					
SCHOOL	APPLIED BIOLOGY AND BIOTECHNOLOGY				
DEPARTMENT	BIOTECHNOLOGY				
STUDY LEVEL	Undergraduate-Elective				
COURSE CODE	3575	3575 SEMESTER 2nd			
COURSE TITLE	PHYSICS METHODS IN BIOTECHNOLOGY				
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	ECTS		
Theory		3	3		
Laboratory exercises		2	1		
TOTAL		5	4		
COURSE TYPE general background, special background, specialised general knowledge, skills development	General Know	wledge			
PREREQUISITES	Secondary education Physics, University First year Mathematics				
LANGUAGE	Greek				
IS THE COURSE OFFERED forERASMUS STUDENTS?	No				
COURSE WEB PAGE	https://oeclass.aua.gr/eclass/courses/BIOTECH160/				

2. LEARNING OUTCOMES

Learning Outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

٠

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B

Guidelines for writing Learning Outcomes

It is a basic introductory course in methods of Physics, as they apply in Biotechnology, comprised of three units. The course aims at introducing students to the basic techniques of physics that are essential background when using technological/digital tools for detailed laboratory and research studies. The material focuses on areas of physics that are directly relevant to biotechnology.

Upon successful completion of the course the students

(1) will be able to perceive basic electrical symbols and signals used in electrical circuit analysis, to understand ideal electrical circuit elements, gaining knowledge of basic analysis methods so becoming able to analyze and synthesize electrical circuits, including applications of amplifiers in general and operational amplifiers in particular.

(2) will be able to perceive the meaning of digital images, will become familiar with basic methods and mathematical tools related to image processing-analysis of digital images, will be informed about the different application fields, such as biomedical imaging, and will be able to apply techniques of digital image analysis-processing in an educational laboratory as well as in a research environment.

(3) will be able to perceive basic principles and methods of Molecular Simulation, to assess the applications of Molecular Simulation methods and recommend them for specific projects, utilizing Molecular Simulation tools.

General Competencies

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the DiplomaSupplement and appear below), at which of the following does the course aim?Search for, analysis and synthesis of data and information, with the use of the necessary technologyAdapting to new situationsDecision-makingWorking independentlyTeam workWorking in an international environmentWorking in an international environment Production of new research ideasProject planning and managementRespect for differences and multiculturalismRespect for the natural environmentShowing social, professional and ethical responsibility and sensitivity to gender issuesCriticism and self-criticismProduction of free, creative and inductive thinking

The students develop skills related to:

- Searching, analyzing, synthesizing data and information by using essential technologies
- Adaptation to novel and diverse challenges
- Decision making
- Independent and teamwork
- Exercising criticism and self-criticism
- Work in a multidisciplinary environment
- Promotion of free, creative and inductive thinking

3. COURSE CONTENT

I. Theory

Electrical Circuit Applications: Elements, Sources, Node and Loop Methods, Operational Amplifier, D/A Convertor. **Digital Image Analysis and Processing**: Color Models, Sampling, 2-D Images and Geometrical Transformations, Image Enhancement and Image Noise Reduction, Image Segmentation, Image Edge Detection, Extraction of Image Characteristics, Introduction to Classifiers. **Macromolecular Simulation**: Potential Energy Function: Bonded / Non-Bonded Terms. Macromolecular Interactions: Proteins / DNA. Simulation Methods: Molecular Mechanics, Molecular Dynamics, Entropy, Free Energy Calculations, Analysis of the Results and Applications of Molecular Dynamics.

II. Laboratories:

Design-Analysis of Electrical Circuits, Use of Operational Amplifiers, Image Enhancement, Image Segmentation, Use of Filters for Edge Detection, Extraction methods of Bio-image Characteristics.

4. TEACHING and LEARNING METHODS - EVALUATION

TEACHING METHOD Face-to-face, Distance learning, etc	In suitably equipped teaching	ng rooms.			
USE OF INFORMATICS and COMMUNICATION TECHNOLOGIES Use of ICT in teaching, laboratory education, communication with students	Use of PowerPoint presentations and simulations in lectures, use of laboratory websites to inform, educate and communicate with students, and use of specialized software for Image processing and Macromolecular Simulation.				
TEACHING ORGANISATION Lectures, Seminars, Laboratory Exercises, Field Exercise, Literature Study & Analysis, Tutorial, Internship, Clinical Exercise, Interactive Teaching, Educational Visits, Study Preparation	Activity Lectures Laboratory exercises	Work Load 39 hr 10 hr			

(Project), Written assignments, Independent study	Group and/or individual 15 hr assignments		
The student's study hours for each learning activity are listed, so that the total workload at the semester level corresponds to ECTS standards.	Independent study	26 hr	
	Final individual assignment	10 hr	
	Course total (25 hours of student work load per ECTS)	100 hr (4 ECTS)	
STUDENT EVALUATION Evaluation Methods, Formative or Inferential, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Report / Report, Oral Examination, Public Presentation, Laboratory Work, Other / Others Expressly specified assessment criteria are stated and whether and where they are accessible to students.	 I. Theory : One project per content unit (15%, 20%, 15%, respectively) which is evaluated with a written analytical report. II. Laboratory: Laboratory reports of data analysis and presentation of results (50%). 		

5. **BIBILIOGRAPHY**

- 1) Electrical Circuits, (only in Greek) (Ηλεκτρικά Κυκλώματα), Εκδόσεις Ν. Παπαμάρκος, 2012.
- Digital Image Processing and Analysis, (only in Greek) (Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας), Εκδόσεις Ν. Παπαμάρκος, 2015.
- Digital Image Processing, (in Greek) (Ψηφιακή Επεξεργασία Εικόνας), R.C. Gonzalez & R.E. Woods, Εκδόσεις Τζιόλα, 2018.
- 4) Physics for Life Sciences, (in Greek) (Φυσική για τις Επιστήμες Ζωής), J. Newman, Εκδόσεις Δίαυλος, 2013.