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Abstract: Determination of inactivation kinetics, associated with thermal pro-
cessing of foods and obtained from dynamic temperature experiments, requires
carefully designed experiments, the primary element being the selection of the
appropriate temperature profile along with a carefully planned sampling sched-
ule. In the present work, a number of different dynamic temperature profiles
were investigated in terms of their ability to generate accurate kinetic parameters
with low confidence intervals (CIs). Although alternative models have been also
tested, our work was concentrated on thermal inactivation kinetics that could
be described by the classical D-z values. A pair of D and z values was assumed,
and for each temperature profile tested, concentration data at different process-
ing times were generated through the appropriate models. Next, an error (up to
±2.5% or ±5%) was introduced on these theoretical values to generate pseudo-
experimental data, and the back-calculation of the assumed kinetic parameters
by non-linear regression was performed. The accuracy and the 95% CIs of the
estimated kinetic parameters were evaluated; joint confidence regions were also
constructed to investigate parameters correlation. The effect of temperature pro-
file pattern, level of error, number of experimental points, and reference temper-
ature was assessed. A stepwise increasing and a single triangle-pattern tempera-
ture profile were the best profiles among those tested. As a general observation,
based on different kinetic models investigated, temperature profiles and sam-
pling intervals that result in concentration versus time diagrams having shapes
as suggested by the primary model used when isothermally applied are not con-
sidered appropriate for parameter estimation.

Nomenclature: b, regression coefficient appearing in in Equations (4) and (5),; b1, regression coefficient appearing in Weibull-type model
(Equation 16); C, concentration of a heat-labile substance, number of microorganisms/mL, spores per container, g/mL, or any other appropriate unit;
DT, decimal reduction time or death rate constant–time at a constant temperature required to reduce by 90% the initial spore load (or, in general, the
time required for 90% reduction of a heat-labile substance), min; F(p,n-p,1-a), the upper 1–a quantile for an F-distribution with p and n–p degrees of
freedom; k, slope of Equation (17), (Weibull-type model)min–1; J, Jacobian matrix; n, number of observations; n1, coefficient in Weibull-type model
(Equation 16); p, number of estimated parameters; r, correlation coefficient (Equation 12); RMSE, root mean square error (Equation 15); S, survival
ratio; SE, standard error of each parameter; SSE, sum of squared errors; T, (product) temperature (◦C); t, time (min); z,, temperature difference
required to achieve a decimal change of the DT value (◦C); Subscripts: i, for i equals 1 to n, referring to the ith experimental point; c, temperature index
in the Weibull-type model (Equation 17); ref, reference value; o, initial condition; obs, observed (experimental point); pred, predicted (mathematically
estimated through equations); T, temperature; Superscripts: T, matrix/vector transpose operator (Equation 7).

2172 © 2021 Institute of Food Technologists R© J. Food Sci. 2021;86:2172–2193.wileyonlinelibrary.com/journal/jfds

https://orcid.org/0000-0002-3625-2950
https://orcid.org/0000-0002-9737-9568
mailto:stoforos@aua.gr
https://wileyonlinelibrary.com/journal/jfds
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1750-3841.15770&domain=pdf&date_stamp=2021-05-30


Dynamic profiles for inactivation kinetics. . . 2173

KEYWORDS
time-varying temperature, thermal inactivation, modeling, parameter estimation, simulation,
uncertainty, joint confidence intervals

1 INTRODUCTION

Modeling the inactivation of microorganisms, enzymes,
and other heat-labile indices is essential for assessing the
efficiency of preservation processes that are designed to
reduce their population density, activity, or concentration
(Fleischman, 2015) and thus for describing and predicting
the quality and the safety of processed foods (Mastwijk
et al., 2017). To carry out a systematic kinetic study, dif-
ferent methodologies have been used in current literature,
with the majority of them being based mainly on experi-
ments under isothermal conditions (Goula et al., 2018).
In this context, the determination of thermal inactiva-

tion kinetic parameters of a safety or quality attribute is
traditionally accomplished through a two-step procedure,
from data collected during constant temperature experi-
ments. Thus, in a first step, inactivation rates at selected
constant temperatures are evaluated through remaining
concentration measurements of the particular heat-labile
agent under investigation at different processing times
through an appropriate primarymodel; the purpose of this
stage is to calculate the reaction rate constant k or, equiv-
alently, any other appropriate parameter. In a second step,
the temperature dependence of the selected parameter
used to describe the inactivation rate, calculated in the first
step, is described through the use of a particular secondary
model. While Arrhenius-type equations are the most pop-
ular secondary models applied to illustrate the tempera-
ture dependence of chemical and biochemical reactions,
in an alternative thermobacteriological approach, the tem-
perature dependence of the decimal reduction time, the D
value, is expressedwith the z-value, defined as the increase
in temperature necessary to induce a 10-fold reduction inD
value. There are numerous recently published isothermal
studies that aimed at calculating theD and z-values, either
in the case of microbial (Huang, 2013; Juneja et al., 2001;
Murphy et al., 2003; Wang et al., 2017) or of enzyme inac-
tivation (Aghajanzadeh et al., 2016; Cao et al., 2018; Cheng
et al., 2013; He et al., 2017). The typical analysis of the data
during the two-step approach is easily implemented. How-
ever, the kinetic parameters of the secondary model are
derived from estimates of the primary model, which are
already characterized by an estimation error that is not
necessarily taken into account (Giannakourou & Stoforos,
2017; VanDerlinden&Van Impe, 2012). Alternatively, from
the same data at isothermal conditions, model parameters
can be determined in a single step, considering the dataset
as a whole, by incorporating the secondary model equa-

tions into the primary model and performing a non-linear
regression (Conesa et al., 2003). This allows for the estima-
tion of kinetic parameters with narrower confidence inter-
vals (CIs), compared to the two-step data analysis, due to
the increased number of degrees of freedom (Van Boekel,
1996).
One should notice, however, that caution is needed

when applying inactivation model equations and their
associated kinetic parameters obtained under isothermal
conditions to dynamic profiles, as this projection may lead
to serious errors in the obtained predictions (Dolan, 2003;
Valdramidis et al., 2006). According to Gil et al. (2006), the
kinetic parameters estimated under non-isothermal condi-
tions may differ from the ones predicted at constant tem-
peratures, and thismay cause a significant prediction error.
A way to overcome this pitfall is by estimating parame-
ters directly through experiments under dynamic temper-
ature profiles, close to real processing conditions (Vieira
et al., 2002). In this context, both primary and secondary
model kinetic parameters can be evaluated in one step
through remaining concentration versus time data from a
single experiment at time-varying temperature conditions.
It should be stressed out, however, that calculating the
inactivation parameters from dynamic temperature data
requires more complicated numerical algorithms instead
of standard non-linear regression techniques (Corradini
et al., 2008). Several studies, in the recent literature, have
demonstrated the advantages of estimating kinetic param-
eters using non-isothermal temperature conditions either
during inactivation (Cattani et al., 2016; Corradini et al.,
2005; Goula et al., 2018; Greiby et al., 2017; Huang, 2013;
Kubo et al., 2018; Valdramidis et al., 2008) or microbial
growth (Cornet et al., 2010; Huang, 2016; Huang & Vin-
yard, 2016; Longhi et al., 2017; Van Derlinden et al., 2008).
At the early stages, researchers used temperature pro-

files, as functions of time, T(t), such as linear, exponential,
and so forth, (Cunha & Oliveira, 2000; Hayakawa et al.,
1969; Leontidis et al., 1999; Nunes et al., 1991; Rhim et al.,
1989a, 1989b) that led to analytical solutions of concen-
tration versus time equations. The potential effect of the
form of the selected temperature profile on the accuracy
and reliability of parameters estimation was studied in
Van Derlinden and Van Impe (2010, 2012), Versyck et al.
(1999) and Versyck et al. (2000). In the majority of the
studies for inactivation kinetics, first-order kinetics were
assumed, although there are several publications where
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other models (Weibull, log-logistic, reparametrized Gom-
pertz equation, etc.) have been selected to describe inacti-
vation data under dynamic conditions in order to account
for the observed non-linearity (Aragao et al., 2007; Corra-
dini et al., 2006; Corradini & Peleg, 2007; Huang, 2009;
Mastwijk et al., 2017; Peleg et al., 2001; Peleg et al., 2008;
Timmermans et al., 2017, Valdramidis et al., 2008; Van
Boekel, 2002).
In the works of Van Derlinden and Van Impe (2010,

2012), Versyck et al. (1999) and Versyck et al. (2000),
the approach of optimal experimental design was intro-
duced, and its main concepts were outlined. D-optimality
conditionmaximizes the determinant det(JT⋅J), for J being
the Jacobian matrix with the partial derivatives of the
model output with respect to the model parameters eval-
uated at each measurement point and leads to minimum
estimation errors on the parameters (Grijspeerdt, & De
Reu, 2005, John, & Draper, 1975). Van Derlinden and Van
Impe (2010, 2012) studied the effect of the form of the
selected temperature profile on the accuracy and reliability
of parameters estimation based on the D-optimality condi-
tion. A similar approach was used by Versyck et al. (1999)
and Versyck et al. (2000), where the focus was drawn on
the optimization of time-temperature profiles with respect
to Fischer information matrix-based objective functions
in order to estimate the kinetic parameters of thermal
inactivation. The Fisher information matrix is the inverse
of the error covariance matrix of the best linear unbi-
ased estimators; it provides information concerning the
measurement errors and parameter sensitivities, allowing
for the evaluation of the quality of parameter estimation
(Munack, 1989; Versyck et al., 1999;). Representative step
profiles were analyzed through a simulation procedure,
and the resulting joint confidence contour plots were
constructed. The initial guesses for the kinetic parameters
𝐷𝑇𝑟𝑒𝑓

and z-valuewere obtained from data from isothermal
studies.
An important issue related to parameter estimation

refers to the reporting of the uncertainty of kinetic parame-
ters via the calculation of their CIs. Dolan (2003) points out
that there may be more than one combination of parame-
ters that give identical results, and that it is essential to cal-
culate CIs in order to assess the uncertainty of the param-
eters. In the majority of published studies concerning the
estimation of 𝐷𝑇𝑟𝑒𝑓

and z-values for inactivation kinetics,
the 95% CIs of each parameter were separately calculated,
either based on the least squares regression analysis (in the
case of isothermal studies) and/or by an appropriate sta-
tistical package, based on t-test statistics and the covari-
ance matrix (e.g., MATLAB, in the case of non-isothermal
conditions), and results are reported as the mean esti-
mate ±95% CI (Cattani et al., 2016; Conesa et al., 2003;
Dolan, 2003; Garre et al., 2018; Garre et al., 2017). When

applying methodologies of simultaneous estimation of all
kinetic parameters (based either on isothermal or time-
varying experiments), one cannot overlook their poten-
tial correlation, which means that the CI of each param-
eter depends on the value of the other parameters involved
(Goula et al., 2018). For these cases, the quality of the simul-
taneously estimated model parameters is assessed by the
construction of the joint confidence regions of the param-
eters involved (Bernaerts et al., 2000; Claeys et al., 2001;
Dolan et al., 2007, Bernaerts et al., 2002; Fernández et al.,
2001; Fernández et al., 1999; Haralampu et al., 1985; Val-
dramidis et al., 2008; Dolan et al., 2015).
In summary, recent research has been focused on

calculating kinetic parameters from dynamic tempera-
ture experiments. However, no universal, standardized
approach has been used as far as kinetic parameter esti-
mation is concerned. In terms of time-temperature pro-
files employed, the majority of the works use combina-
tions of exponentially or linearly increasing and constant
temperature segments. Rarely different time-temperature
profiles are compared or evaluated in terms of the accu-
racy and confidence with which the kinetic parameters are
estimated and discussion on this aspect is limited. Since
the derived parameter estimates are further used for pre-
dictions at different, usually fluctuating temperature con-
ditions, the necessity of accurately identifying those val-
ues, as well as their variability, is evident. In this context,
the objective of the present work was to design a system-
atic kinetic approach and investigate a number of dynamic
temperature profiles, of different types, in terms of their
ability to generate accurate kinetic parameters with low
CIs. Calculating mean values of kinetic parameters is not
adequate; asymptotic CIs and joint confidence regions of
the estimated parameters are of equal importance, in order
to assess time-varying profile suitability and they will be
discussed. Factors, such as the number and the location of
the experimental points (i.e., the pattern and the frequency
of sampling) as well as the quality of data (expressed as the
percentage of error imposed on theoretical values when
generating data sets to be tested) were also investigated.
The goal was to provide practical suggestions, concern-
ing time-temperature profile selection, and a methodol-
ogy that could be applicable whatever temperature profiles
andmathematicalmodels are used to describe inactivation
kinetics.

2 THEORETICAL CONSIDERATIONS
ANDMETHODOLOGY DEVELOPMENT

The mathematical/computational details pertained to
published studies of kinetic parameter determination from
dynamic experiments aremainly addressing three issues:
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(1) the primary and secondary kinetic models used to
express the concentration versus time data and the
effect of temperature on the reaction rates, respec-
tively;

(2) the dynamic time-temperature profiles employed;
(3) the statistical procedure used to evaluate the kinetic

parameters.

The following analysis presents a step-by-step devel-
opment of the methodology employed, and without
restricting its applicability, it is concentrated on thermal
inactivation kinetics that could be described by the clas-
sical D-z values (Ball, 1923). In subsequent sections the
present methodology is also used with different primary
and/or secondary models.
According to the classical thermobacteriological

approach used during thermal processing of foods (Ball,
1923; Bigelow, 1920) inactivation is described by Equation
(1):

log

(
𝐶

𝐶𝑜

)
= −

𝑡

𝐷𝑇
(1)

where DT, the decimal reduction time, is defined as the
time in minutes, at constant temperature, required to
reduce the initial concentration of a thermolabile sub-
stance by 90%; C, the concentration at time t; and Co, the
initial concentration of the thermolabile substance.
Based on Equation (1) and the application of linear

regression, theDT value is determined at each temperature
of the isothermal experiments from the negative reciprocal
of the corresponding slope. The temperature dependence
of DT is characterized by the z-value, that is, the increase
in temperature necessary to induce a 10-fold reduction in
DT (Equation 2):

log𝐷𝑇 = log𝐷𝑇𝑟𝑒𝑓
+
𝑇𝑟𝑒𝑓 − 𝑇

𝑧
(2)

where Tref is a reference temperature. Parameter z is deter-
mined as the negative reciprocal of the slope of logDT vs. T
regression line.
Alternatively, a global one-step approach can be applied,

in which the model parameters are determined in a single
step, based on all information of the experimental dataset
as awhole and performing a non-linear regression through
Equation (3) obtained by combining Equations (1) and (2):

log

(
𝐶

𝐶𝑜

)
=

10
𝑇−𝑇𝑟𝑒𝑓

𝑧 ⋅ 𝑡

𝐷𝑇𝑟𝑒𝑓

(3)

When Equation (3) is used to determine the kinetic param-
eters 𝐷𝑇𝑟𝑒𝑓

and z from experimental C/Co data, a constant
b is introduced into the equation in order to account for

any possible error associated with Co values as shown in
Equation (4). This parameter, b, is kept in all subsequent
equations if they are treated as regression equations, that
is, for parameter estimation purposes:

log

(
𝐶

𝐶𝑜

)
= 𝑏 −

10
𝑇−𝑇𝑟𝑒𝑓

𝑧 ⋅ 𝑡

𝐷𝑇𝑟𝑒𝑓

(4)

In the case of non-isothermal experiments, which is of
particular interest in this study, kinetic parameters were
obtained by non-linear regression fitting of Equation (5) to
the non-isothermal experimental data (Goula et al., 2018):

log

(
𝐶

𝐶𝑜

)
= 𝑏 −

𝑡

∫
0

10
𝑇(𝑡)−𝑇𝑟𝑒𝑓

𝑧 𝑑𝑡

𝐷𝑇𝑟𝑒𝑓

(5)

In order to assess the ability of different temperature
profiles to be used for kinetic parameter estimation, sim-
ulated concentration data at different processing times
were generated, for each particular profile tested, through
Equation (5) and assumed b, 𝐷𝑇𝑟𝑒𝑓

, and z-values. Unless
otherwise stated, for all temperature profiles tested, 𝐷𝑇𝑟𝑒𝑓

(at a reference temperature of 120 ◦C) and z-values equal
to 52.0 min and 31.8 ◦C, respectively, based on published
kinetic data of L-carnitine thermal inactivation under
dynamic conditions (Goula et al., 2018), along with b = 0,
were used.Next, an intentionally low randomrelative error
(in the range of ±2.5% to ±5%) was introduced on these
“theoretically calculated” concentration values, using the
EXCEL function RANDBETWEEN(), in order to create the
necessary pseudo-experimental points. Then, the assumed
kinetic parameters (z, 𝐷𝑇𝑟𝑒𝑓

, and b) were back-calculated
by non-linear regression in a MATLAB environment. In
the non-linear regression, an iterative least-squares anal-
ysis was used to locate the best estimates of the kinetic
parameters, minimizing the sum of squared errors until
convergence, using the following equation:

𝑆𝑆𝐸 =

𝑛∑
𝑖=1

[
log

(
𝐶

𝐶𝑜

)
𝑜𝑏𝑠,𝑖

− log

(
𝐶

𝐶𝑜

)
𝑝𝑟𝑒𝑑,𝑖

]2

(6)

Equation (6) was minimized using the Nelder–Mead sim-
plex optimization technique (Luersen & Le Riche, 2004;
Nelder & Mead, 1965). This is a direct search method that
is commonly applied to find the minimum or maximum
of an objective function in a multidimensional space and
can provide solutions when parameters to be optimized
are not a priori known. To obtain the optimized kinetic
parameters’ estimates, for each time-temperature case, the
MATLAB function fminsearchwas applied, combinedwith
an option command, where the maximum number of
iterations as well as the acceptable sensitivity error were
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defined. The integral of Equation (5) was calculated using
the trapezoidal integration rule of MATLAB (trapz), in
order for any general type of time-varying temperature pro-
file, that results in an integral that cannot be evaluated ana-
lytically, to be handled.
The estimation and the symmetry or asymmetry of the

parameters’ CIs is an issue of major concern for models’
reliability and practical application; in the case of linear
models, CIs for the parameters are exactly defined and
symmetric, whereas for non-linear models, estimation of
CIs is not straightforward (Goula et al., 2018).When report-
ing CIs for non-linear parameter estimation, it is essential
to describe how these intervals were derived (Dolan et al.,
2007).
For non-linear models, an established method for com-

puting the CIs is via bootstrapping (Efron 1979; Huang &
Vinyard, 2016; Joshi et al., 2006) through a Monte Carlo
technique (Van Boekel, 1996) that does not depend on lin-
ear approximations. Alternatively, a common and estab-
lished approximation of non-linear CIs is the calculation of
the asymptotic CI, which is symmetric (Van Boekel, 1996),
a procedure followed in this analysis. This approximation
may underestimate the true CI (Johnson & Faunt, 1992),
but, as discussed in Dolan et al. (2007), asymptotic CIs are
computationally practical and conceptually attractive.
In the present work, CIs at a (1−α) CI were estimated as

±SE⋅tα/2,(n-p) (Mishra et al., 2008; Van Boekel, 1996), using
the asymptotic standard errors (SEs) and the t-distribution
parameter (n being the number of observations and p the
number of estimated parameters).
The SE of each parameter (SEi) was calculated by

Equation (7), SEi being the square root of the corre-
sponding diagonal of the symmetric “i” parameter of the
variance-covariance matrix (Dolan et al., 2007). In Equa-
tion (7), J is the Jacobian matrix given by Equation (8),
and the superscript T denotes the matrix/vector transpose
operator. The Jacobian matrix contains the partial deriva-
tives of the model output with respect to the model param-
eters evaluated at each measurement point:

⎛⎜⎜⎜⎝
𝑆𝐸2

𝐷𝑇𝑟𝑒𝑓
𝑆𝐸𝐷𝑇𝑟𝑒𝑓

,𝑧 𝑆𝐸𝐷𝑇𝑟𝑒𝑓
,𝑏

𝑆𝐸𝑧,𝐷𝑇𝑟𝑒𝑓
𝑆𝐸2

𝑧 𝑆𝐸𝑧,𝑏

𝑆𝐸𝑏,𝐷𝑇𝑟𝑒𝑓
𝑆𝐸𝑏,𝑧 𝑆𝐸2

𝑏

⎞⎟⎟⎟⎠ =
(
𝐽𝑇 ⋅ 𝐽

)−1
⋅
𝑆𝑆𝐸

𝑛 − 𝑝

(7)

𝐽 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝑌1

𝜕𝐷𝑇𝑟𝑒𝑓

𝜕𝑌1

𝜕𝑧

𝜕𝑌1

𝜕𝑏

. . .

. . .

. . .
𝜕𝑌𝑛

𝜕𝐷𝑇𝑟𝑒𝑓

𝜕𝑌𝑛

𝜕𝑧

𝜕𝑌𝑛

𝜕𝑏

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(8)

where

𝑌 = log

(
𝐶

𝐶𝑜

)
(9)

The MATLAB nlparci(beta,residuals,jacobian) function,
was used to provide the 95% CI of parameters 𝐷𝑇𝑟𝑒𝑓

, z, and
b, through calculation of the Jacobianmatrix and the resid-
uals (Equation 10):

Residual𝑖 = log

(
𝐶

𝐶𝑜

)
𝑜𝑏𝑠,𝑖

− log

(
𝐶

𝐶𝑜

)
𝑝𝑟𝑒𝑑,𝑖

(10)

It is worth noticing, however, that in our case, where
the purpose is to analyze time-varying data, the covari-
ance of the simultaneously estimated parameters cannot
be neglected by solely estimating individual CIs. Thus,
joint confidence regions were calculated and graphically
illustrated, according to Equation (11) (Draper & Smith,
1981):

𝑆𝑆𝐸 ≤ 𝑆𝑆𝐸(𝜃)

{
1 +

𝑝

𝑛 − 𝑝
𝐹 (𝑝, 𝑛 − 𝑝, 1 − 𝑎)

}
(11)

where SSE(θ) is the least sum of squared differences,
at optimal parameter values, and F is the upper 1–α
quantile for an F-distribution with p and n–p degrees of
freedom.
In the presentwork, joint confidence regionswere calcu-

lated only for the two of the involved parameters, namely,
the 𝐷𝑇𝑟𝑒𝑓

and the z-values, for the third parameter b being
kept constant during the joint confidence regions calcula-
tions at its mean estimated value.
All combinations of kinetic parameters with the sum of

squared errors less than or equal to the calculated SSE(θ)
values will be inside the joint confidence region. Equation
(11) does not require the confidence region to have an ellip-
tical shape (Donaldson & Schnabel, 1987; Schwaab, Bis-
caia, et al., 2008). The confidence regions obtained with
this method (Equation 11), called likelihood confidence
regions, can be disjoint and unbounded (Schwaab, Bis-
caia, et al., 2008). For two-parameter models, the likeli-
hood region can be determined with standard contouring
methods (Bates &Watts, 1988). All of our calculations were
based on the iterativemethod ofMotulsky andChristopou-
los (2004), which can be summarized in the following
procedure:
Initially, parameter 1 (along y-axis – the z-value in our

case) was assigned a fixed value, equal to the best-fit value
(parameter estimate) already determined. Parameter 2
(along x-axis – the 𝐷𝑇𝑟𝑒𝑓

value in our case) was allowed to
vary until SSE ≅ SSE(θ). In general, since the contour is
oval, there will be two values (roots) of parameter 2 that
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will satisfy the criterion set by Equation (11). In order to
complete the lower part of the contour (the part that cor-
responds to values of z lower than the mean), parameter
1 is assigned at a slightly lower value, ∼95% of the best-fit
value, and the previous procedure is repeated. The same
steps are repeated, with constantly decreasing parameter 1
values until the two roots of parameter 2 are almost equal,
such as within 1%–5% of each other. This completes the
lower part of the contour. In order to complete the upper
part of the contour, we repeat the previous procedure
starting from parameter 1 values at 105% of the best-fit
value and proceed by using increasing values. All the
above mentioned repetitive process was implemented
in a MATLAB environment after editing the necessary
algorithm in order to identify the values of the parameter
set (𝐷𝑇𝑟𝑒𝑓

and z-values) that fulfill the requirements of
Equation (11).
Another area of interest is related to the importance

of choosing the most appropriate reference tempera-
ture when estimating kinetic parameters. The reference
temperature is usually defined as a suitable average
temperature of the analyzed experimental data (Schwaab,
Lemos, et al., 2008). Few studies have investigated the
optimal reference temperature, which is necessary to
improve the precision of parameter estimates, minimizing
– in some cases as the Arrhenius equation – parameter
correlation (Schwaab & Pinto, 2007). However, according
to Schwaab, Lemos, et al. (2008), when the model contains
more than one kinetic constant, the situation is more
complicated and it becomes impossible to eliminate all
the parameter correlations simultaneously. It must also be
noticed that the elliptical approximation of the confidence
region of parameter estimates is exact for linear models
only (Schwaab & Pinto, 2007). Depending on the degree
of non-linearity of the model, the confidence region can
present very complex shapes (Donaldson & Schnabel,
1987). In Dolan et al. (2013), Tref has been given different
values while estimating the kinetic parameters. The
optimum Tref value was chosen at the value where the
correlation coefficient between the two parameters was
minimum.
In our work, after initial parameter estimation assum-

ing a reference temperature of 120 ◦C, Tref was allowed
to vary and the corresponding joint confidence regions
of the kinetic parameters (DTref, z) were calculated and
comparatively plotted; the aim was to draw some conclu-
sions regarding Tref value effect on parameter correlation.
Through specific examples of different temperature
profiles, it was demonstrated that the proper selection
of the reference temperature in Equation (5) could lead
to the estimation of uncorrelated parameters, improving
significantly the precision of the parameter estimates
(Schwaab & Pinto 2007). For this purpose, in the present

work, the correlation coefficient, called r, between the
two main parameters 𝐷𝑇𝑟𝑒𝑓

and z was evaluated using
Equation (12). Its value varies between −1.0 and +1.0. The
highest absolute value of r, |r|, indicates more difficulty in
the estimation process (Mishra et al., 2008). As stressed
out by Schwaab and Pinto (2007), as |r| gets closer to 1,
the parameters become more correlated and parameter
estimation becomes less reliable. The high correlation
between parameter estimates can be attributed to different
reasons, such as inappropriate model representation,
bad experimental design, and/or model non-linearities
(Schwaab & Pinto, 2007):

𝑟 =
𝑆𝐸𝐷,𝑧

𝑆𝐸𝐷 ⋅ 𝑆𝐸𝑧
(12)

where SED,z, SED, and SEz are calculated from the
variance–covariance matrix of Equation (7).

3 RESULTS AND DISCUSSION

In presenting our findings, we will first dedicate a section
where the correctness and the reliability of the applied
procedures, that is Equations (5) to (11) and their MAT-
LAB implementation, will be tested. In developing and
suggesting commonly accepted practices and procedures
for kinetic parameter determinations from dynamic
temperature data, proof of proper evaluation of the
integral equation (Equation 5), the determination of the
mean values and their 95% CI of the kinetic parameters,
and the joint CIs of the parameters are essential. Next,
a number of different dynamic temperature profiles
will be discussed in their ability to be used for proper
kinetic parameter determinations. A separate section
will be devoted to the evaluation of joint CIs of the
kinetic parameters involved in order to determine their
potential correlation and draw further conclusions about
the appropriateness of the particular temperature profile
applied.

3.1 Validation of the procedure

The whole procedure was tested against inactivation data
obtained for a linearly increasing temperature profile,
a case for which analytical calculations are available
(Hayakawa et al., 1969; Huang, 2013). The linear temper-
ature profile was expressed with Equation (13), in which
To is the initial temperature, and c (◦C/min) is the linear
heating rate.

𝑇(𝑡) = 𝑇𝑜 + 𝑐𝑡 (13)
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2178 Dynamic profiles for inactivation kinetics. . .

F IGURE 1 Testing of the proposed, through MATLAB,
methodology (dashed black, or red when in color, line) with data
from the analytical solution, Equation (14), employed through a
typical, non-linear regression procedure (solid gray, or light blue
when in color, line) for a linear temperature profile (solid black
line). Points refer to simulating pseudo-experimental C/Co data

Substituting T from Equation (13) into (5), the concen-
tration change can be calculated from Equation (14)
as

log

(
𝐶

𝐶𝑜

)
= 𝑏 −

𝑡

∫
0

10

(𝑇𝑜 + 𝑐𝑡) − 𝑇𝑟𝑒𝑓

𝑧 d𝑡

𝐷𝑇𝑟𝑒𝑓

= 𝑏 −
𝑧

ln(10)𝑐𝐷𝑇𝑟𝑒𝑓

⎡⎢⎢⎢⎣10
(𝑇𝑜 + 𝑐𝑡) − 𝑇𝑟𝑒𝑓

𝑧 − 10

𝑇𝑜 − 𝑇𝑟𝑒𝑓

𝑧

⎤⎥⎥⎥⎦ (14)

For a linear heating temperature profile with an increas-
ing rate of c = 1 ◦C/min, theoretical concentration ver-
sus time data were generated through Equation (14) based
on the nominal D120 ◦C and z-values of 52.0 min and 31.8
◦C, respectively (Goula et al., 2018). On these C/Co val-
ues, a maximum random error up to ±5% was imposed in
order to create simulated pseudo-experimental data. Back-
estimation of the kinetic parameters was performed either
with the proposed methodology based on the developed
MATLAB procedure or a typical non-linear regression pro-
cedure through the analytical Equation (14) and a com-
mercially available statistical software (SYSTAT). Kinetic
parameters with the two procedures were practically iden-
tical; D120 ◦C values equal to 53.31 ± 1.69 min and 53.19
± 1.60 min (mean value ± 95% CIs) were obtained with
the proposed methodology and the non-linear regression,
respectively. Similarly, z-values equal to 31.10± 0.80 ◦Cand
31.43 ± 0.79 ◦C were obtained with the proposed method-
ology and the non-linear regression, respectively. Thus, the
validity of the proposed methodology, in comparison to
analytical procedures, was established. PredictedC/Co val-
ues based on the kinetic parameters determined through
the two procedures are depicted in Figure 1.

F IGURE 2 Testing of the proposed, through MATLAB,
methodology (dashed black, or red when in color, line) with a
semi-manual, through Microsoft EXCEL, approach (solid gray, or
light blue when in color, line) for an experimental temperature
profile (solid black line). Points refer to experimental literature C/Co
data (Goula et al., 2018)

The proposedmethodology, throughMATLAB, was also
validated using experimental C/Co data (Goula et al., 2018)
collected during time-varying processing temperature con-
ditions comprised of 6 temperature ramp segments, each
ramp following a constant temperature period (Figure 2),
and against the procedure proposed by Goula et al. (2018).
Goula et al. (2018) used the same equations like the ones
presented here but in a semi-manual approach through
Microsoft EXCEL. Note that for this case, there is no ana-
lytical solution for the integral appearing in Equation (5).
Again, practically identical D120 ◦C and z-values, equal to
51.9± 9.9min and 31.8± 6.5 ◦C, respectively, throughMAT-
LAB, compared to 52.0 ± 9.8 min, 31.8 ± 6.0 ◦C, through
EXCEL, were obtained. Predicted C/Co values for the two
procedures are depicted in Figure 2.

3.2 Dynamic temperature profiles

After validating the methodology developed in MAT-
LAB, the next step involved the investigation of differ-
ent types of time-temperature profiles. Among an infi-
nite number of potential dynamic profiles that could have
been selected, the following profiles were chosen: exper-
imental temperature profile used by Goula et al. (2018;
Figures 3(a) and (b)), profiles involving one linearly
increasing followed by one linearly decreasing segments
(Figures 3(c) and (d)), sequences of linearly increasing
and linearly decreasing segments (Figures 3(e) to (n)), and
sequences of step-wise increasing anddecreasing segments
(Figures 3(o) and (p)). The logic behind the temperature
profiles chosen was either to include profiles that are com-
monly used in the literature or to choose profiles that,
according to the authors’ experience, are expected to lead
to either appropriate or inappropriate results. For each of
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Dynamic profiles for inactivation kinetics. . . 2179

F IGURE 3 Effect of dynamic temperature profiles (solid black lines) on thermal inactivation kinetics. Solid gray, or light blue when in
color, lines represent theoretical values. Points refer to simulating pseudo-experimental C/Co data having up to ±2.5% (left column) or ±5.0%
(right column) relative error. Dashed black, or red when in color, lines are predictions based on Equation (5) and the proposed non-linear
procedure. Note that an increased number of pseudo-experimental points is associated with Figures 3(k) and (l)
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F IGURE 3 Continued
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TABLE 1 Kinetic parameters, with their 95% confidence interval (CI), determined from different time-varying temperature profiles for
Tref = 120 ◦C

Case Profile type
% Error
(up to ±)a

Number
of points

Mean
D120 ◦C
(min)

± 95% CI
on D120 ◦C
(min)

Mean z
(◦C)

± 95% CI
on z (◦C) Mean b

± 95% CI
on b

Root mean
square
error
(RMSE) |r|

1 Figure 3(a) 2.5 7 45.13 4.75 27.09 3.12 −0.0112 0.0269 0.014 0.84
2 Figure 3(b) 5 7 47.44 6.96 27.79 4.45 −0.0140 0.0321 0.018 0.25
3 Figure 3(c) 2.5 8 51.93 3.13 32.69 7.85 0.0005 0.0211 0.013 0.71
4 Figure 3(d) 5 8 51.29 3.30 26.04 10.42 −0.0101 0.0303 0.023 0.11
5 Figure 3(e) 2.5 8 52.05 2.64 25.82 7.03 −0.0122 0.0159 0.010 0.75
6 Figure 3(f) 5 8 50.54 4.89 27.99 9.04 −0.0229 0.0299 0.018 0.72
7 Figure 3(g) 2.5 7 51.48 4.19 28.28 13.56 0.0006 0.0243 0.014 0.73
8 Figure 3(h) 5 7 52.09 6.72 27.3 23.48 −0.0207 0.0297 0.024 0.90
9 Figure 3(i) 2.5 9 50.57 1259.56 27.46 4280.38 −0.0015 0.0015 0.010 1.00
10 Figure 3(j) 5 9 46.78 2802.89 20.81 11492.28 0.0102 0.0102 0.011 1.00
11 Figure 3(k) 2.5 26 52.43 5.82 32.75 12.53 −0.0004 0.0106 0.014 0.97
12 Figure 3(l) 5 26 52.53 22.18 16.16 15.63 −0.0044 0.0158 0.021 1.00
13 Figure 3(m) 2.5 8 17.91 67976.27 18.17 30600.94 −0.0122 0.0265 0.014 1.00
14 Figure 3(n) 5 8 74.93 2.89E+09 40.28 1.11E+09 −0.0188 0.0384 0.021 1.00
15 Figure 3(o) 2.5 8 205.50 858.20 157.88 1324.46 0.0064 0.0225 0.016 1.00
16 Figure 3(p) 5 8 298.11 985.99 783.24 19375.79 0.0143 0.0210 0.015 1.00

a% of random error imposed on theoretical values to generate simulated experimental data.

the temperature profiles selected, the number of the exper-
imental C/Co points used, as well as the percent relative
error introduced in order to generate the simulated data,
was tested. In the diagrams presented in Figure 3, the
agreement between fitted and pseudo-experimental data
is depicted for representative time-temperature profiles. A
number of additional cases were also examined without
having been included in themanuscript as they do not pro-
vide added insights. For all profiles tested, an R2 between
fitted and pseudo-experimental data of at least 0.98 was
obtained.
In the diagrams presented in Figure 3, the continuous

black line represents the temperature profile employed.
The gray (light blue when in color) solid line depicts the-
oretical C/Co values created through Equation (5) for the
given temperature profile and for b= 0,D120 ◦C = 52.0 min,
and z= 31.8 ◦C, while the points are simulated experimen-
tal data created from the theoretical values with the intro-
duction of a random error up to ±2.5% or ±5%. Finally,
the dashed black (red when in color) line shows the pre-
dicted C/Co values through Equation (5) based on the
kinetic parameters estimated by applying the proposed
least square procedure on the simulated experimental data.
The effect of the dynamic temperature profiles used, the

relative error (up to ±2.5% or ±5%) introduced on the the-
oretical concentration values, and the number of experi-
mental points on the determination of the D120 ◦C and z

(and b) values, as well as their 95% CI, are presented in
Table 1, along with the root mean square error (RMSE –
Equation 15), a measure of the deviation of the experimen-
tal data from model predictions:

𝑅𝑀𝑆𝐸 =

√
𝑆𝑆𝐸

𝑛 − 𝑝
(15)

where n is the number of data points and p the number of
parameters (here equals to 3).
Increasing experimental error and/or decreasing num-

ber of observations resulted in increasing uncertainty (as
reflected by the ±95% CI) in kinetic parameters estima-
tion. Note in some cases, the deviation of the mean kinetic
parameter values from the expected ones (e.g., case 15 –
Figure 3(o)) and the enormous CI are calculated (e.g., case
9 – Figure 3(i) and case 14 – Figure 3(n)) as a result of an
inappropriately selected temperature profile.
From Figure 3 (graphical assessment) and Table 1

(RMSE values) one can judge the quality of fitting for each
time-temperature scenario assumed. In all cases studied,
both RMSE and R2 values can be considered to describe
an adequate, and frequently an excellent, fitting of the
model to the experimental points. This is indicative of
the appropriateness of the model and the procedure used
to describe thermal inactivation under the imposed con-
straints. In a second step, the appropriateness of the model
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2182 Dynamic profiles for inactivation kinetics. . .

for proper parameter estimation can be also judged by
the mean estimates of the kinetic parameters of Equa-
tion (5) (viz., D120 ◦C, z-value and b) and their devia-
tion from the assumed values of 52.0, 31.8 and 0, respec-
tively. For instance, it can be observed that in the cases of
Figures 3(m), (o), (n), and (p), the mean estimates dif-
fer significantly from the assumed values. This is a direct
consequence of the dynamic temperature profiles used.
Going deeper in the evaluation of parameter estimation,
one can also take into consideration the CIs (±95% CI) of
the kinetic parameters of the model and select those cases
that lead to narrow CI. For example, although being classi-
fied as a good scenario based on the criterion of the value of
the mean estimates, the cases of Figures 3(i) and (j) show
unacceptably broad CIs for both D and z parameters.
The correlation coefficient, r, between kinetic parame-

ters𝐷𝑇𝑟𝑒𝑓
and z-values ranged significantly for the different

types of profiles tested (Table 1). According to Johnson and
Frasier (1985), an |r| value higher than 0.96 would be criti-
cal, whereas Bates and Watts (1988) considered 0.99 as the
critical value. Dolan et al. (2007) mentioned that the corre-
lation coefficient is highly dependent on the reference tem-
perature. Therefore,when reporting confidence regions for
parameters, it is necessary to report both the reference
temperature and the correlation coefficient (Goula et al.
2018). The high |r| values associatedwith profile types from
Figures 3(i) to (p) (Table 1), could be the result of using a
reference temperature of 120 ◦C rather than an “optimum”
reference temperature. The effect of the reference tempera-
ture employed on parameters correlation is discussed later
in a separate section.
In order to test the underlying statistical assumptions

for the kinetic parameters determination, that is, constant
variance, independence of variables, normality of the dis-
tribution, as discussed in Van Boekel (1996) and Dolan and
Mishra (2013), the residuals, in terms of both C/Co and
log(C/Co), were plotted (data not shown) and found to be
centered on zero, with no particular trend, for the whole
range of fitted values. Therefore, random errors imposed
on theoretical values can be assumed to produce residuals
that are normally distributed. Based on calculations of the
residuals of the linearized equation (Equation 5), the lin-
earized form of the model caused a larger relative error on
simulated data than that imposed on the initial concentra-
tion data as has been also discussed in the literature (Van
Boekel, 1996). However, the exact level of error does not
disturb the validity of our methodology.
A further crucial criterion for assessing the adequacy

of the profiles selected is the construction of the joint CIs
(JCI). As will be discussed later in detail, from the pattern
of the JCI, one can evaluate the quality of the fitting in
terms of the level of correlation between the kinetic param-
eters studied.

3.2.1 Commenting on the values of the
kinetic parameters

In the preceding paragraphs, results and discussion were
based onD and z-values equal toD120 ◦C = 52.0min and z=
31.8 ◦C, typical thermal inactivation kinetic parameters for
quality indices (Lund, 1977). Nevertheless, similar conclu-
sions can be derivedwhen typicalD and z-values formicro-
bial thermal inactivation are used as illustrated in Figure 4
for D120 ◦C = 1 min and z = 10 ◦C. For the case of a temper-
ature profile with a single linearly increasing followed by
a single linearly decreasing segments (Figure 4(a)), mean
values of the kinetic parameters determined by the pro-
posed procedure were in agreement with the theoretical
values and were characterized by narrow CIs (D120 ◦C =

1.28 ± 0.04 min and z = 9.93 ± 0.38 ◦C, Table 2). On the
contrary, a temperature profile consisting of three peri-
odical sequences, of one linearly increasing and one lin-
early decreasing segments (Figure 4(b)) resulted in inac-
curate kinetic parameters (Table 2) as expected from the
previous analysis of the data with D120 ◦C = 52.0 min and z
= 31.8 ◦C. In particular, due to the sampling time
employed, estimations produced different shapes of inac-
tivation curves based on the starting values of the param-
eters used to initiate iterations and the convergence cri-
teria. As illustrated in Figure 4(b), the kinetic parameters
in Table 2 give rise to completely different shape patterns,
represented by stepwise, sinusoidal, or even straight line
curves on a semi-log plot.
As it will become clear in the proceeding analysis, an

integrative methodology should be applied: The appropri-
ateness or not of a particular temperature profile to pro-
duce accurate estimates of the kinetic parameters, besides
the graphical agreement and the RMSE value between
experimental and estimated concentration data, theCI and
the correlation coefficient of the estimated kinetic param-
eters, is also determined by the joint confidence regions of
the parameters involved–as affected by the right choice of
the reference temperature. An alternative generic scheme
which, in brief, includes plotting of scaled sensitivity coef-
ficients, performing the inverse problem, reporting param-
eter estimations, along with their SEs, and finally, justify-
ing the validity of the results produced was presented by
Dolan and Mishra (2013).

3.3 Alternative primary and secondary
models

The analysis presented up to now was based on the D-z
approach (Equations 1 and 2) and their proper derivatives).
This does not really impose a restriction on the proposed
methodology. Any other appropriate primary or secondary
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Dynamic profiles for inactivation kinetics. . . 2183

F IGURE 4 Effect of dynamic temperature profiles (solid black lines) on thermal inactivation kinetics. Solid gray, or light blue when in
color, lines represent theoretical values corresponding to D120 ◦C = 1 min and z = 10 ◦C. Points refer to simulating pseudo-experimental C/Co
data having up to ±5.0% random relative error. Dashed black, or red when in color, lines are predictions based on Equation (5) and the
proposed non-linear procedure

model, with the appropriate adjustments, could be used
without altering the conclusions of this study. However,
the underlying assumption in the analysis that the primary
and the secondary models applied to the system under
investigation were a priori known could be a constraint
to the methodology. Indeed, one can imagine a combina-
tion of primary and secondary models that will adequately
describe a set of experimental concentration versus time
data obtained during time-varying conditions, with minor
statistical differences in the parameters used to character-
ize the goodness of fit. For example, the simulated data
presented in Figure 5(a) were described either by the first
order (D-z) model or a Weibull-type model (Equation 16)
and an appropriate secondary model (Equation 17) pro-
posed by Chen and Campanella (2012):

log 𝑆(𝑡) = −𝑏1(𝑇) ⋅ 𝑡
𝑛1 (16)

where S(t) is the survival ratio C/Co, T is a constant tem-
perature, and b1 and n1 are empirical parameters. Parame-
ter b1 is considered as a temperature-dependent parameter,
given by the following secondary model:

𝑏1(𝑇) = ln {1 + exp [𝑘 ⋅ (𝑇 − 𝑇𝑐)]} (17)

where Tc and k are treated as empirical constants. Substi-
tution of Equations (17) into (16) gives:

log 𝑆(𝑡) = − ln {1 + exp [𝑘 ⋅ (𝑇 − 𝑇𝑐)]} ⋅ 𝑡
𝑛1 (18)

Equation (18) is valid for data collected at a constant tem-
perature. For variable temperature profiles, the differen-
tial form of Equation (16), leading to the ordinary differen-
tial equation (Equation 19), was derived (Peleg et al., 2005)
assuming that the power variable n1 is constant and that

variable b1(T) is given by Equation (17):

𝑑(log 𝑆(𝑡))

𝑑𝑡
= −𝑏1 [𝑇 (𝑡)] 𝑛1

(
− log 𝑆(𝑡)

𝑏1 [𝑇 (𝑡)]

)(𝑛1−1)∕𝑛1

(19)

Thus, for variable temperature profiles, an iterative
method, such as the one developed by Peleg et al. (2005)
and also applied by Chen et al. (2007) should be used
to analyze inactivation data. The implementation of this
method (Peleg et al., 2005), called the “incremental” ver-
sion, is based on the discretization of the dynamic profile to
small-time intervals, where the temperature is assumed to
remain constant and estimated by the average temperature
during that time period. Using this iterative method, the
parameters k,Tc, and n1were determined for the simulated
data and the temperature profile of Figure 3(b) (Table 1,
case 2). The comparison between the predicted and the
simulated data is presented in Figure 5(a). As can be seen,
theWeibull-typemodel togetherwith the secondarymodel
just described, that is, Equation (19), gave appropriate pre-
dictions (Figure 5(a) and Table 3). For the same data, the
first order D-z model has been employed with satisfac-
tory results (Figure 3(b) and Table 1) and for comparison
purposes are plotted again on Figure 5(a). As can be seen
from Figure 5(a) and Tables 1 and 3, both kinetic models
(using first-order or Weibull as the primary model) ade-
quately described the experimental data, and there was no
apparent reason to select the one over the other. However,
in reference to Figure 5, the use of the kinetic parame-
ters determined from data for the temperature profile of
Figure 5(a) to a different temperature profile, that is, the
temperature profile of Figure 5(b) gave predictions of sur-
vival ratios clearly distinguishable for the two models.
From preliminary data (not shown) this is mainly an effect
of the differences in the primary rather than the secondary
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models employed. Thus, for systems where the primary
and the secondary kinetic models are not known, it is sug-
gested to use additional data for a second time-varying tem-
perature profile in order for the appropriate kinetic models
to be selected (Cattani et al., 2016; Huang, 2020; Huang &
Li, 2020).

3.4 Joint confidence
regions–correlation of the parameters

The individual 95% CIs on the kinetic parameters pre-
sented and discussed so far indicated the confidence by
which each of the parameterswas determined.However, in
order to make conclusions about the ability of the temper-
ature profiles investigated to generate uncorrelated param-
eters, the joint confidence regions between the parameters
involved had to be determined.
The shape and the particular form of the joint con-

fidence region per se provide useful information on the
reliability, uncertainty, and correlation of the parameter
estimates. A joint confidence region of parameter esti-
mates can be defined as a hyper-ellipsoid in the parameter
space. When parameters are not correlated, the axes of the
hyper-ellipsoid are parallel to the parameter axes. It must
be noticed that the elliptical approximation of the confi-
dence region of parameter estimates is exact only for linear
models. Regarding the shape of the curves in the case of
non-linear models (such as the ones used in this work),
the contours are often asymmetric about the estimate and
may be twisted, with the shape of p-dimensional bananas
(Atkinson & Donev, 1992). The higher the correlation, the
more stretched ellipse (deviation from a cycle) will be the
shape of the joint confidence region (Dolan et al., 2007).
Depending on the degree of non-linearity of themodel, the
confidence region can present very complex shapes (Don-
aldson&Schnabel, 1987; Schwaab&Pinto, 2007). Schwaab,
Biscaia, et al. (2008) studied the confidence regions of
kinetic constants in non-linear models and concluded that
the confidence regions can be non-convex, open, and con-
stituted by disconnected regions.
Τhe joint confidence regions of the main parameters,

𝐷𝑇𝑟𝑒𝑓
and z-values (keeping the b value fixed at its mean

estimate) were calculated (through Equation 11) for data
from a number of representative time-varying temperature
profiles and depicted in Figure 6 for some particular cases.
The selected cases refer to profiles from Table 1 represen-
tative of good or bad examples in estimating the mean val-
ues and/or the ±95% CIs of the kinetic parameters. In the
corresponding figures (Figure 6), x-axis depicts the 𝐷𝑇𝑟𝑒𝑓

value and y-axis the z-value. For all cases, plots were cal-
culated assuming a reference temperature of 120 ◦C. The
effect of Tref choice on the joint confidence regions and
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Dynamic profiles for inactivation kinetics. . . 2185

F IGURE 5 Effect of different models on thermal inactivation kinetics for particular dynamic temperature profiles (solid black lines).
Points on Figure 5(a) refer to simulating pseudo-experimental C/Co data obtained with the proposed D-zmodel with up to ±5.0% added
relative error. Solid gray, or light blue when in color, lines represent predictions using Equation (19) (Weibull), while dashed black, or red
when in color, lines are predictions using the D-zmodel (first-order)

TABLE 3 Kinetic parameters, with their 95% CI, determined using Equation (19), associated with a Weibull type model as primary
model, and the time-varying temperature profile of Figure 5(a)

Primary model
used Profile type

Number of
points

Mean k
(◦C-1)

± 95% CI
on k (◦C-1)

Mean Tc
(◦C)

± 95% CI
on Tc (◦C) Mean n1

± 95% CI
on n1 RMSE

Equation (4) Figure 5(a) 7 0.0745 0.00876 149.25 24.584 0.583 0.301 0.00491

correlation of the parameters will be discussed in the next
section.
The joint CIs at a confidence level of 90%, 95%, and 99%

are depicted in Figure 6(a) for the data associated with
the temperature profile of Figure 3(a). Note that according
to Haralampu et al. (1985), the extremes of the 90% joint
confidence ellipses correspond approximately to the ends
of the 95% individual CIs of the parameter estimates (the
joint probability of two events at 95% probability is approx-
imately 90%, i.e., 0.952 ≈ 0.90). Joint confidence regions,
depicted in Figure 6(a), have a normal, ellipsoid shape, and
although the axes of the ellipses are not parallel to the co-
ordinate axes, they imply that the use of a profile, such as
the one depicted in Figure 3(a), leads to the accurate pre-
diction of parameters, with small 95% CI, and acceptable
JCI.
As presented in Table 1, profiles of Figures 3(c) and (d)

have an acceptable performance, based both on the param-
eter estimates’ closeness to the assumed values as well as
the small 95% CI. Their JCI, as depicted in Figures 6(b)
and (c), although deviating from an ideal ellipsoid, can
be considered as acceptable, regarding parameter correla-
tion. The higher error introduced in Figure 3(d) C/Co data,
compared to Figure 3(c), is considered responsible for the
tailing effect observed for the larger D120 ◦C (greater than
55 min) and the lower z (lower than 15 ◦C) values.
Data for temperature profiles like the ones shown in

Figure 3(j) (acceptable estimates but large 95% CI) or
Figures 3(n) and (o) (where both criteria–estimates and
95% CI–are not met) provided shapes of joint confidence

regions confirming and emphasizing the weakness of
using them to predict kinetic parameters. Figure 6(d)
presents an example of an open, unbounded, structure
of JCI for the case of Figure 3(j) data, while Figures 6(e)
and (f) depict similar behavior of joint confidence regions
for data from Figures 3(n) and (o), respectively. These
confidence regions deviate significantly from the ellip-
soid and the confidence region grows continuously in
one direction as the corresponding parameter increases
(Ensweiler et al., 2014; Schwaab, Biscaia, et al., 2008).
In reference to Figure 6(e), unrealistic D120 ◦C values
of, for example, 350 min, associated with unrealis-
tic also and a practically infinite number of z-values
(z>400 ◦C) can give acceptable predictions. One should
also notice the symmetrical disconnected joint confi-
dence regions presented in Figure 6(f) for the data in
Figure 3(o) (also observed for the data in Figure 3(n)
although we did not show it in Figure 6(e)).
As anticipated, the increased number of experimental

points used with the same temperature profile, that is, 26
versus 9 points for the Figures 3(l) versus (j) cases, respec-
tively, can lead to a more acceptable JCI (Figure 6(g)).
In relation to Figure 6(g), an interesting pattern can be
observed; for some specific values of 𝐷𝑇𝑟𝑒𝑓

, there are two
distinct intervals where z parameter values are inside the
confidence region. According to Ensweiler et al. (2014),
this behavior could be attributed to the possible depen-
dence among estimated parameter values, although very
narrow ellipses are expected for confidence regions of
highly correlated parameters.
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2186 Dynamic profiles for inactivation kinetics. . .

F IGURE 6 95% (unless otherwise explicitly stated) joint confidence regions from 𝐷𝑇𝑟𝑒𝑓
-z estimates for indicative time-varying profiles for

Tref equal to 120 ◦C. Figure 6(a) refers to Figure 3(a) data, Figure 6(b) to Figure 3(c) data, and so on, as indicated on the top of each graph.
Bold, black-bordered points, , refer to the estimated mean values of the parameters
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Dynamic profiles for inactivation kinetics. . . 2187

F IGURE 7 Graphical selection of the optimum reference
temperature (where r equals to zero) for selected temperature
profiles

It must be also observed that, in most cases, confidence
regions are not symmetric with respect to the optimum
estimated parameter values, indicating that the param-
eter deviations depend on the actual parameter values
(Enzweiler et al., 2014). For example, in Figure 6(b) (for
the data from Figure 3(c)), for the estimate of D120 ◦C,
equal to 51.9 min, its lower bound is around 48.5 min
and the upper bound is slightly higher than 58.5 min.
The same stands also for other profiles (e.g., Figures 6(a)
and (c)).
Finally, for the data of Figure 4(b) (stepwise), the joint

confidence region forms a very narrow and slightly curved
surface, an almost line-approaching shape (Figure 6(h))
indicating that the parameter estimates are highly cor-
related (Schwaab & Pinto, 2007), that is, to any arbi-
trary value of one of the parameters corresponds a fixed
value of the other parameter as indicated from the joint
correlation “line”. For example, a D120 ◦C-z pair of 11.1 min
and 97.2 ◦C (Figure 6(h)) gives equally acceptable predic-
tionswith those obtainedwith themeanD120 ◦C-z estimates
of 1.42 min and 13.21 ◦C (Table 2, case 2). At this point,
it is worth stressing out that due to the existence of high
correlations among model parameters, numerical proce-
dures used for minimization of objective functions (in our
case Equation 11) could be unable to locate the JCI. In this
case, a point-by-point iterative procedure for the location
of every point of the JCI, as described in the Theoretical
Considerations andMethodology Development section, was
employed.

3.5 Effect of the reference temperature,
Tref

The role of the reference temperature, Tref, in affecting
parameter correlation has been recently given attention.

F IGURE 8 Effect of Tref on parameter correlation as depicted
from the joint confidence regions of the normalized D-z parameters.
Figure 8(a) refers to Figure 3(a) data, Figure 8(b) refers to
Figure 3(c) data and Figure 8(c) refers to Figure 3(l) data. Reading
the diagrams on the top of each figure from the left to the right, Tref
values of 100, 105, 110, 115, 120, 125, and 130 ◦C were used

Through reparameterization of the Arrhenius equation,
Schwaab and Pinto (2007) and Schwaab, Lemos, et al.
(2008) showed, both analytically and numerically, that the
proper selection of the reference temperature can reduce
or even eliminate the parameter correlation in kinetic
models, improving–at the same time–the precision of the
parameter estimates. In another work of the same group,
the same methodology was followed for the reduction of
parameter correlations in power-law models (Schwaab &
Pinto, 2008).
To alleviate possible concerns that the selection of an

optimum temperature profile could be a function of the
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2188 Dynamic profiles for inactivation kinetics. . .

F IGURE 9 Effect of Tref choice on the joint confidence regions
of the DTref-z parameters for Fig. 3o temperature profile. Bold,
black-bordered points, , refer to the estimated mean values of the
parameters

reference temperature used in performing the relevant
calculations, for the temperature profiles depicted in
Table 1, we estimated the optimum reference temperature
as the one giving rise to |r| values close to zero (Figure 7)
and recalculated the kinetic parameters (Table 4). For
comparison purposes, 𝐷𝑇𝑟𝑒𝑓

values and their 95% CI were
converted to the corresponding D120 ◦C estimates through
Equation (2). Note that as the correlation coefficient crite-
rion (Equation 12), regarding the calculation of the opti-
mum reference temperature, is equivalent and provided
the same results with the application of the D-optimality
condition of maximizing the determinant of (JT⋅J;
Equations 7 and 8) the corresponding calculations were
not included within the text.
As can be seen, by comparing Table 1 with D120 ◦C val-

ues of Table 4, mean values remained unchanged while
the corresponding 95% CIs were reduced, as expected, the
reduction being noticeable for profiles where optimumTref

deviated from 120 ◦C (case 15, Figure 3(o)). Nevertheless,
z-values and their 95% CIs remained unchanged (Dolan
et al., 2013; Schwaab & Pinto, 2007), high or low depending
on the applicability of the particular dynamic temperature
profile for kinetic parameter determination, as has been
discussed in the preceding sections. Similar results are
shown for cases 1 and 3 of Table 2.
In order to observe the effect of the reference tempera-

ture on the parameter correlation, as depicted by the cor-
responding joint confidence regions, the reference temper-
ature was allowed to vary, as shown in Figure 8, where the
normalized D and z-values are plotted (Goula et al., 2018).
Although all initial calculations were performed assuming
a reference temperature of 120 ◦C, in a next step, the Tref
was allowed to assume different values and the covariance
matrix of parameter estimates was recalculated each time,
deriving the corresponding parameter correlation and the
relative errors of parameter estimates (Goula et al., 2018).
The mean D and z-values obtained for each Tref were used
to calculate the normalized D and z-values.
Figure 8 shows that in some cases of the alterna-

tive temperature profiles analyzed, uncorrelated model
parameters can be obtained for a particular Tref lead-
ing to better parameter estimations (Schwaab, Biscaia,
et al., 2008). Figure 8 allows for the graphical approx-
imation of the optimum reference temperature for rep-
resentative temperature profiles of Figure 3. In refer-
ence to Figure 8(a) (for the data from Figure 3(a)) when
the optimum reference temperature is used (close to 112
◦C, Table 4), the parameter confidence region becomes
almost circular, indicating that uncorrelated parameters
can be estimated (Schwaab & Pinto, 2008). For the data
from Figure 3(c) (Figure 8(b)), the optimum reference
temperature is very close to 120 ◦C, approximately 118
◦C (Table 4). When moving away from the optimum

TABLE 4 Effect of Tref on the kinetic parameters determined for Figure 3(m) data

Case
Tref
(◦C)

Mean
𝑫𝑻𝒓𝒆𝒇

(min)
± 95% CI on
𝑫𝑻𝒓𝒆𝒇

(min)
Mean z
(◦C)

± 95% CI on
z (◦C) Mean b

± 95% CI
on b RMSE |r|

Calculated
D120 ◦C
(min)a

1 60 624.11 1.03E + 05 140.55 5.00E + 04 −0.0121 0.02654 0.0135 0.999 233.54
2 70 511.96 5.17Ε + 04 158.85 6.15Ε+04 −0.0121 0.02654 0.0135 0.999 248.01
3 80 578.41 7.61E + 04 57.63 1.48E + 04 −0.0122 0.0263 0.0135 0.999 116.99
4 90 425.89 4.88E + 04 37.97 1.18E + 04 −0.0122 0.0265 0.0135 0.999 69.06
5 105 110.77 9.88E + 05 10.24 6.78E + 05 −0.0122 0.0202 0.0135 0.999 3.80
6 110 22.48 4.51E + 08 6.37 1.31E + 08 −0.0122 0.0258 0.0135 0.999 0.61
7 120 17.91 6.80E + 04 18.17 3.06E + 04 −0.0120 0.0264 0.0135 0.999 17.91
8 130 15.12 2.31E + 04 25.88 1.45E + 04 −0.0122 0.0265 0.0135 0.999 36.81
9 135 18.06 1.85E + 04 32.01 1.21E + 04 −0.0122 0.0265 0.0135 0.999 53.12
10 140 14.04 1.51E + 04 33.18 1.20E + 04 −0.0122 0.0265 0.0135 0.999 56.25

aBased on Equation (2).
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TABLE 5 Optimum reference temperatures and corresponding kinetic parameters for different time-varying temperature profiles

Case Profile type
Optimum
Tref (◦C)

Mean
𝑫𝑻𝒓𝒆𝒇

(min)

± 95% CI
on DTref
(min)

Mean z
(◦C)

± 95% CI
on z (◦C)

Calculated
D120 ◦C (min)a

± 95% CI on
Calculated
D120 ◦C (min) |r|

1 Figure 3(a) 112 89.08 4.40 27.09 3.12 45.13 2.23 0.18
2 Figure 3(b) 111 100.00 7.73 27.79 4.45 47.44 3.66 0.07
3 Figure 3(c) 118 59.79 2.61 32.69 7.85 51.93 2.27 0.20
4 Figure 3(d) 120 51.29 3.30 26.04 10.42 51.29 3.30 0.11
5 Figure 3(e) 122 43.54 1.53 25.82 7.03 52.05 1.82 0.29
6 Figure 3(f) 117 63.77 4.59 27.99 9.04 49.83 3.59 0.01
7 Figure 3(g) 118 60.59 3.55 28.28 13.56 51.48 3.02 0.32
8 Figure 3(h) 122 42.26 3.05 27.30 23.48 50.02 3.62 0.20
9 Figure 3(i) a − − − − − − −

10 Figure 3(j) a − − − − − − −

11 Figure 3(k) 116 69.45 1.92 32.75 12.53 52.43 1.45 0.00
12 Figure 3(l) 123 34.25 1.40 16.16 15.63 52.53 2.15 0.16
13 Figure 3(m) a − − − − − − −

14 Figure 3(n) a − − − − − − −

15 Figure 3(o) 86 337.42 37.88 157.88 1324.46 205.50 23.07 0.13
16 Figure 3(p) a − − − − − − −

Note:*: not found through the algorithm implemented.
aBased on Equation (2).

Tref, joint confidence regions become more elliptical and
slanted either to the left or to the right. Finally, for the
data from Figure 3(l) (Figure 8(c)), the optimum refer-
ence temperature (approximately 123 ◦C, Table 4) pro-
vides a more appropriate joint confidence region, mini-
mizing the two distinct intervals where z parameter val-
ues were located for specific values of 𝐷𝑇𝑟𝑒𝑓

observed for
other reference temperatures including the Tref of 120 ◦C
(Figure 6(g)).
In relation to themain objective of the present work, the

kinetic parameters and the appropriate statistics were cal-
culated for different Tref values for a number of tempera-
ture profiles that up to now were evaluated as improper.
In particular, for the data in Figure 3(m), the estimated
𝐷𝑇𝑟𝑒𝑓

, z, and b values together with associated (calculated)
D120 ◦C are presented in Table 4. As can be inferred from
Table 4, based on the high 95% CI and the deviation of
the D120 ◦C and z-values from the originally used ones to
generate the pseudo-experimental C/Co data (of 52.0 min
and 31.8 ◦C, respectively), the choice of the reference tem-
perature does not improve the performance of the par-
ticular profiles. This is proven, for Tref = 120 ◦C, by the
corresponding value of the correlation coefficient, that is,
close to 1 (Table 1). The same holds for the other reference
temperatures tested, where there was a weakness to select
the optimum reference temperature. This was also noticed
for temperature profiles in Figures 3(i), (j), (n)), and 3(p)
(Table 5).

As far as joint CIs are concerned, the employment of
an optimum reference temperature does not necessarily
affect conclusions arising through joint confidence regions
observations. As shown in Figure 9, for Figure 3(o) temper-
ature profile, the choice of Tref, although it alters the shape
of the joint confidence regions, does not render that par-
ticular profile acceptable for both DTref-z parameter esti-
mations.

4 CONCLUSION

Determination of inactivation kinetics from concentration
versus time data obtained under dynamic temperature
conditions, involvesmore complicated and elaborated data
analysis and interpretation but requires less experimen-
tal effort, compared to isothermal data analysis. Thermal
inactivation kinetics, described by the classical D-z val-
ues, were initially used as a case study to demonstrate the
use of the proposed methodology in order to determine
inactivation kinetic parameters from experimental time-
varying temperature conditions of any form. The selec-
tion of a particular dynamic temperature profile is cru-
cial and greatly affects the feasibility of such a procedure.
From all different time-varying profiles tested, those giving
rise to concentration versus heating time curves deviating
from typical first-order kinetic lines were found to provide
more accurate, and with a rather small CIs, estimations
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2190 Dynamic profiles for inactivation kinetics. . .

of the kinetic parameters. Estimation of the joint CIs also
revealed cases that lead to parameters highly correlated,
not allowing for reliable parameter estimations. The selec-
tion of an appropriate reference temperature does influ-
ence joint CIs, without altering the ability of a particular
temperature profile to be used for parameter estimation.
In reference to the profiles tested, stepwise increasing or
single triangle-shaped temperature profiles are the recom-
mended profiles for proper kinetic parameter evaluation.
As shown, the same procedure can be employed when a
different primary or secondary model is used to describe
kinetic data. When the primary model mainly, and to a
lesser extent the secondary model, is not a priori known,
data collection for at least two different time-varying tem-
perature profiles is suggested.
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