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Abstract

Food security, seen from a global perspective, encompasses
both the sustainable production of high-quality food and the
reduction of food waste. Food production needs to be resource
efficient and contribute to economic growth through sustain-
able use of natural capital. Promising innovative processes
have become internationally marketable applications based on
research conducted over the last decades. The ultimate chal-
lenge is to define the niche applications for each breakthrough
that will optimally fulfill the objective of highest quality food
products with full environmental and economic sustainability.
The aim of the article is to present and discuss the current and
future perspectives of the food processing technologies, able
to disrupt the food industry sector and consumer behavior.
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The innovation aspect in food processing

Food preservation implies placing microorganisms in a
hostile environment, with the aim to inhibit microbial
growth or eliminate microbial survival. The feasible
microbial response to any hostile environment defines
the possibility to survive and potential ability to grow.
Significant research is required in view of these re-
sponses; especially focusing on the response of specific
spoilage and pathogenic microorganisms within the

environment of a food product, affecting directly food
quality and safety characteristics. The main consumer
requirement is the production of high-quality foods,
with high nutritional value, improved quality and
longer shelf life. For this reason, research has been
conducted for the evaluation of the homeostasis,
metabolic exhaustion and stress reactions of microor-
ganisms, by introducing the new concept of multitarget
preservation for a gentle but most effective preserva-
tion of hurdle-technology foods [1]. Nowadays, the
development of new food processing and packaging
methods or novel combinations of existing technologies
raises the interest of academia and industry and shows
the potential to achieve significant quality improve-
ment and shelf life extension of perishable food prod-
ucts, and thus improve management of the supply
chain and subsequently reduce food waste. The current
trend for novel food product design focuses on the
development and application of minimal processing
methods, mainly nonthermal processing technologies,
such as high pressure, pulsed electric fields, and cold
plasma. Furthermore, novel, biodegradable packaging
materials and encapsulation of functional biomolecules
are currently developed with the aim to inhibit mi-
crobial growth and physicochemical reactions and
extend the shelf life of the packaged food products.
The main advantage of novel processing over conven-
tional (mainly thermal) treatment techniques is the
better retention of sensory parameters and nutritional
value.

Food processing is directly related to the human being and
welfare. Global food production must be sufficient to meet
human nutritional needs in the future. Under this context,
novel food technologies, e.g. ultrasonic for emulsification
v.s. high shear homogenization [2], combined application
of rotor-stator and high pressure homogenization and spray
drying for the microencapsulation of bioactive compo-
nents in food matrices [3], electrospraying [4] and
microfluidics [5], and food and feed ingredients [6] play a
significant role in food security, safety, and sustainability.
Climate change and environmental impact of any pro-
posed industrial activity (including food industry) remain
a significant threat to the European region and globally. To
overcome these challenges, Europe requires a new growth
strategy that will transform the Union into a modern,
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resource efficient and competitive economy [ 7]. The goals
that have been set under this context lie within environ-
mental (ze., elimination of net emissions of greenhouse
gases by 2050), financial (7.e., economic growth decoupled
from resource use), and societal (no person and no place is
left behind) activities. The European Green Deal is the
overall plan to make the European economy sustainable.
This can be achieved by turning climate and environ-
mental challenges into opportunities and making the
transition just and inclusive for all [8].

At the beginning of 2020, within only a few weeks,
things had changed globally, due to COVID-19 disease
caused by the coronavirus 2 (SARS-CoV-2). During the
quarantine period, a dietary change has been reported
towards the consumption of bakery products, dairy
(cheese), pastry, eggs, and pulses, indicated by up to
300% frequency increase compared to the prequarantine
period [9]. Up to the pandemic crisis, within the food
related academic sector, the discourse had been domi-
nated by the development and production of healthy
and safe food products. The main issues considered
were relevant to sustainability, circular economy, energy
and water efficiency for product development and pro-
cess design. Efficiency had been the main focus, with
resilience not been considered as a significant issue
[10].

In parallel to the problem of assuring high quantity and
quality food for a growing world population, food in-
dustry has to satisfy today’s consumers’ needs. Con-
sumers expect high nutritional value and biofunctional
properties of nutritious foods, exceptional sensory
characteristics, extended shelf life and ease of use, yet
fresh like, minimally processed and with a ‘clean label’,
sustainably developed in an environmentally and
energy-efficient manner. These criteria create excep-
tional challenges for the continuous improvement of
traditional processes and the creation of new products
and design of advanced processes [11]. At the same
time, consumers are often hesitant to accept in-
novations in food processing technologies, as the
‘naturalness’ of food currently influences consumer
acceptance. Food neophobia has been reported towards
innovations such as nanotechnology, cultured meat, and
food irradiation. Considering the current challenges in
food production, including crises caused by pandemics
and population growth, disruptive food technologies are
needed to progress towards a more resilient food
system. Several food technologies have been consid-
ered as ‘disruptive’ innovations, as they fundamentally
changed the food industry sector [12]. Representative
cases are historically reported at BC era (e.g. 700.000
BC for fire, 10.000 BC for fermentation), and AD era
(e.g. 1795 for canning, 1834 for refrigeration, 1945 for
microwave ovens and 1995 for pulsed electric fields)
[13].

The innovation challenges in food process engineering
lie within potential advances in established technologies
rather than novel processes. Innovation originates with
the release of an idea, which after extensive analysis
turns out to the concept and proposed solution, as it
finally reaches the market and commercialization level.
Each phase corresponds to a unique set of challenges
and time-consuming actions within the innovation and
creating value process. True innovations bring step
changes in food process engineering and are actually rare
events. On the other hand, innovations in food
processing are mostly renovations or improvements of
existing processes, which means taking smaller steps
than the aspect of true innovation. A list of implications
and opportunities of advance novel processing technol-
ogies and their potential to accelerate the food industry
sector for the new Green Deal is presented in Table 1.

Thermal processing: ‘I invent nothing, |
rediscover’

The significance of the rediscovery of a well-defined
idea and concept, so it can be applicable to the real
life, has been emphasized by the French sculptor August
Rodin (1840—1917) with his creation “T’he Thinker’.
During this period, at the beginning of the 19th century,
the most important food processing achievements have
been reported (Figure 1). Food preservation technolo-
gies, re., refrigeration, pasteurization, and canning, are
considered as the three most significant food inventions.

The first reference of thermal processing of foods took
place at 1810 by Nicolas Appert with the invention of
food canning [24], which was the result of the delivery
of more than 200 prototypes by the inventor. Although
the first applications were delivered in glass containers,
the term ‘canning’ is considered as the most significant
application of food thermal processing. Several applica-
tions have been reported and optimizations of the
thermal processing of different food products. Data
analysis and advanced mathematical modeling ap-
proaches have raised significant interest from the
academia and industrial stakeholders, for process vali-
dation and optimization [25]. Nowadays, thermally
processed foods may provide an excellent nutrition
worldwide. Several alternative container materials have
been developed that have the ability to protect canned
food for longer periods, while at the same time having
low greenhouse gas emissions.

Nonthermal processing: the case of high
pressure — 130 years of technological
progress

Based on the EU guidelines and recommendations,
the produced food must be safe, nutritious, and high
quality. In line with the EU Green Deal and the
incorporation of the environmentally friendliness of
the developed food systems, the global standard has
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Table 1

Disruptive food processing technologies Tsironi et al.

Novel processing technologies for the acceleration of food industry to the new Green Deal.

Technology

Applications for food processing

Opportunities to progress toward a more resilient
food system

Reference

High pressure

Pulsed electric fields

Cold plasma

Pulsed light

Ultrasound

Irradiation

3D food printing

ICT-Internet of Things

Microbial inactivation, modification of enzymatic
activity, enhancement of extractability of
compounds from food processing side streams,
allergen control.

Enhancement of extractability of compounds from
food processing side streams, acceleration of
mass transfer (drying, brining), reduction of
food contaminants, reduction of initial microbial
load.

Surface disinfection of foods and food packaging
materials, degradation of toxins, allergen
control.

Surface treatment of foods and food packaging
materials, treatment of wastewater for
reprocessing.

Accelerate processes (filtration, freezing/thawing,
mass transfer, sterilization/pasteurization),
enhancement of extractability of compounds
from food processing side streams

Food surface treatment, reduction of initial
microbial load

Customized food design and production

Online monitoring of food quality and safety in the
processing plant

Significantly improve safety and quality of food,
enables side streams utilization.

Enables side streams utilization, improve
functionality, extractability and recovery of
valuable compounds, improves process
efficiency and sustainability.

Significantly improve safety and quality of food.

Significantly improve safety and quality of food,
enables water recycling and wastewater
utilization.

Enables side streams utilization, improves
process efficiency and sustainability.

Significantly improve safety and quality of food

Allow for personalized, precise, and reproducible
nutrition containing personalized, appropriate
amounts of nutrients.

Radically transform and disrupt safety and quality,
waste remediation and recycling, security, and
authenticity and traceability.

[14-18]

[14,19,20]

[14,21]

[22]

[14—-16]

[14,23]

[12]

[12]
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Historical timeline of nonthermal food processing.

set the recommendation of food sustainability. New
operations should be provided with the aim to reduce
the use of chemical food preservatives and unsus-
tainable packaging systems [8].

Nonthermal processing technologies, such as high hy-
drostatic pressure, pulsed electric fields, ultrasound and
cold plasma, have been applied to exemplify scalable
and flexible food production processes [20]. Significant
basic research has been conducted to adequately define
and understand the fundamental principles underlining
the main nonthermal processing technologies
(Figure 2). The demand for safe and high-quality foods

Figure 3

has introduced high pressure as the most developed
emerging food processing technology for mild preser-
vation of food and the possibility to achieve and scale-up
significant extension of shelf life of a wide range of food
products without the use of chemical and preservatives.
The inactivation of spoilage and pathogenic microor-
ganisms is the most wide industrial application of high
pressure worldwide [26]. The first high pressure treat-
ment has been reported in the late 1890s, regarding the
microbial inactivation in dairy products (milk) [27].
During the past two decades, the number of the in-
dustrial high pressure systems shows a steady increase at
several countries in Europe, USA, and Asia. Nonthermal
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processing, such as high pressure, has been recently be
used to enhance the bioavailability of food constituents,
modify the activity of enzymes correlated to maturation
processes, proteins and food biopolymers structure,
enhancing specific food properties [17,18,28,29]. It may
also accelerate the extraction of bioactive compounds
from food waste and potentially increase their bioavail-
ability [15,16].

Food processing waste valorization: from
linear model to circular economy

Based on the Farm to Fork strategy, a circular economy
should also be achieved. It has been estimated that it
might take a generation, ze., 25 years, to transform an
industry sector and all the related value chain, based on
a targeted action plan [30]. Between 1970 and 2017, the
annual extraction of materials was triplicated worldwide,
based on the linear economy model, and a steady in-
crease has been reported, representing a major risk
(Figure 3). The transition to the circular model offers a
great potential for more environmentally friendly tech-
nologies resulting in lower emissions, sustainable pro-
duction, and services and job creation at all stages of the
food chain [8]. However, this transition is time-
consuming and with significant variations between
different food processing applications and host countries
[31]. In addition, it is necessary to consider the simul-
taneous environmental and socio-economic impact of
food waste and food loss reduction. With the
announcement of Sustainable Development Goals by
the EU, the implementation of scientific studies
focusing on the adoption of circular economy models
and tools in the EU practices has been encouraged [32].

Approaches such as the ‘biorefinery’ concept provide
major aspirations toward the development of increas-
ingly integrated technologies. Several waste biorefinery
prototypes have been recently developed towards sus-
tainable circular bioeconomy in the food production
sector [33]. Aguieiras et al. [34] produced a fungal crude
lipase by solid state fermentation using babassu cake as
substrate. Fermented solids were applied for the bio-
catalysis of was ester synthesis. An integrated bio-
refinery has been developed by Tsouko et al. [35] by the
use of orange peel waste obtained from catering services.

Conclusions

Facing shifts at a historically unprecedented pace in a
rapidly growing world population, research and advances
in the field of food engineering will make a major
contribution to ensuring adequate quantities of high-
quality food. Food process optimization integrates cost,
water and raw material savings and waste and environ-
mental burden prevention to deliver food products of
high quality with enhanced economic and environ-
mental sustainability.

Disruptive food processing technologies Tsironi etal. 5

Using state-of-the-art science and engineering expertise
and modern tools, such as numerical process simulation,
advanced measuring equipment, online process analysis,
microstructuring and nanostructuring technologies, en-
ables targeted product, process and package design to be
focused on a deeper understanding of food component
structures and properties. Promising innovative pro-
cesses have become internationally marketable appli-
cations based on research conducted over the last
decades.

Food engineering and processing advances, however, are
mainly enhancements and the incorporation of new
knowledge and concepts into existing processes. The
ultimate challenge is to define the niche applications for
each breakthrough that will optimally fulfill the objec-
tive of highest quality food products with full environ-
mental and economic sustainability.
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