COURSE OUTLINE

1. GENERAL					
SCHOOL	FOOD AND NUTRITIONAL SCIENCES				
ACADEMIC UNIT	FOOD SCIENCE AND HUMAN NUTRITION				
LEVEL OF STUDIES	BACHELOR OF SCIENCE				
COURSE CODE	3410	SEMESTER 4 TH			
COURSE TITLE	UNIT OPERATIONS IN FOOD PROCESSING				
INDEPENDENT TEACHING ACTIVITIES					
if credits are awarded for separate components of the course,			WEEKLY		
e.g. lectures, laboratory exercises, etc. If the credits are awarded			TEACHING		CREDITS
for the whole of the course, give the weekly teaching hours and			HOURS		
the total credits					
Lectures and problem solving tutorials		5		5	
Add rows if necessary. The organisation of teaching and the teaching					
methods used are described in detail at (d).					
COURSE TYPE	Field of Science & Engineering				
general background,					
special background, specialised					
general knowledge, skills					
development					
PREREQUISITE COURSES:	Principles of Food Engineering, Mathematics, Physics, Basic Computing				
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:					
IS THE COURSE OFFERED TO	NO				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)					

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described. Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The objective of this course is the student:

1) to acquire knowledge on the basic unit operations that are used in food processing plants i.e. evaporation, filtration, extraction, etc. More specifically, the student should understand the principles governing these processes, know the equipment involved and describe and explain their operation.

2) to acquire the skill in analysis and mathematical description of the main relations between the design and operating parameters of these processes and calculate them.

Upon successful completion of this course the student will be able to:

describe the various types of evaporators used in liquid food concentration and calculate the effect of operating parameters on the concentration of the final product, evaporation temperature, energy consumption, etc. Also to describe and explain the different ways of saving energy in evaporation
calculate the properties of air using a psychrometric chart and the required air flow rate in a hot air drier. Describe the various types of dryers, distinguish the comparative advantages of each one and calculate the necessary time for drying a product

• understand and describe the cooling cycle and the corresponding equipment. Calculate the coefficient of performance of the equipment and the heat load of a refrigerator or a cold room

• understand and describe extraction, understand the mass transfer phenomena involved and calculate the concentration of the extracted substance in the different streams as well as the required extraction time

• understand and describe a membrane separation system and distinguish between osmosis, ultrafiltration and microfiltration

• understand and describe separation by centrifugation, filtration and sieving and the systems for grinding, mixing, extrusion and distillation. Perform basic calculations for these systems

By solving problems, the student will acquire the skill to calculate certain operating and design parameters in unit operations in food processing and compare different alternative solutions to achieve high process efficiency and high product quality.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and
information, with the use of the necessary
technologyProjAdapting to new situationsShow
Decision-makingrespWorking independentlyCritit
Team workProdWorking in an international environment.....
Working in an interdisciplinary environmentOther
Decision of new research ideas

Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking

Others...

Analyze and synthesize data and information Promote creative and induction thinking Work autonomously Work in teams

3. SYLLABUS

- **1.** Liquid food concentration. Single and multiple effect evaporators
- 2. Analysis of an evaporator, energy conservation. Freeze concentration
- **3.** Psychrometry. Drying theory
- 4. Drying methods and dryers
- 5. Refrigeration cycle. Refrigeration and freezing systems. Heat pump
- 6. Centrifugation and Filtration
- 7. Membrane separation. Reverse osmosis, ultrafiltration, microfiltration
- 8. Liquid / liquid extraction and solid / liquid extraction. Supercritical fluid extraction
- **9.** Distillation. Differential distillation, equilibrium distillation, steam distillation, distillation columns
- **10.** Extrusion and Mixing
- **11.** Size reduction and Screening
- 12. Review

DELIVERY Face-to-face, Distance learning, etc.	In class teaching (power point presentation and blackboard writing)			
,	Theory and problem solving Class notes			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Solution of exercises that requi Using H/Y in lectures (power po			
TEACHING METHODS	Activity	Semester workload		
The manner and methods of teaching are	Lectures	39		
described in detail.	Tutorial	26		
Lectures, seminars, laboratory practice,	Homework	25		
fieldwork, study and analysis of				
bibliography, tutorials, placements, clinical practice, art workshop, interactive				
teaching, educational visits, project, essay				
writing, artistic creativity, etc.				
<i></i>				
The student's study hours for each learning	Study hours	35		
activity are given as well as the hours of	Total contact hours and	125		
non-directed study according to the principles of the ECTS	training	125		
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Language of evaluation, methods of	 I. Final written examination (100% of the final course grade in THEORY) that includes: Multiple choice questions or Right/Wrong questions 			
evaluation, summative or conclusive,	- Short answer questions			
multiple choice questionnaires, short- answer questions, open-ended questions,	- Judgment questions			
problem solving, written work,	- Descriptive, assay type questions			
essay/report, oral examination, public				
presentation, laboratory work, clinical examination of patient, art interpretation,	and the second	(1000) 511 51 1		
other	II. Final written examination (100% of the final course			
	grade in LABORATORY) that includes:			
	- Calculation problems			
Specifically-defined evaluation criteria are				
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	 Calculation problems Judgment questions 			

5. ATTACHED BIBLIOGRAPHY

1) NOTES OF FOOD ENGINEERING. Part I. S. YANNIOTIS. AUA, 2011 (in Greek).

2) FOOD ENGINEERING, 2nd Edition, X. N. LAZARIDES. S. GIAHOUDIS-M. GIAHOUDIS, 2007 (in Greek).

3) SOLVING PROBLEMS IN FOOD ENGINEERING, STAVROS YANNIOTIS, Springer, 2008.

4) INTRODUCTION TO FOOD ENGINEERING, P.R. SINGH and D.R. HELDMAN, 2nd Edition, Academic Press, 1993.