Με την επιτυχή ολοκλήρωση του μαθήματος, ο φοιτητής/τρια αναμένεται να:
• Μπορεί να εξηγήσει τα χαρακτηριστικά βασικών πειραματικών σχεδίων.
• Μπορεί να επιλέγει και να εφαρμόζει κατάλληλες μεθόδους στατιστικής συμπερασματολογίας για την ανάλυση ενός πειράματος και την ολοκλήρωση μιας ερευνητικής εργασίας (εντός των ορίων του περιεχομένου του μαθήματος).
• Μπορεί να εφαρμόζει στατιστικούς ελέγχους υποθέσεων και να κατασκευάζει διαστήματα εμπιστοσύνης που επιλέγει κατάλληλα για την εξαγωγή συμπερασμάτων από πειραματικά ή δειγματοληπτικά δεδομένα.
• Μπορεί να κατασκευάζει κατάλληλα μοντέλα παλινδρόμησης για να διερευνήσει τη σχέση δύο ή περισσότερων μεταβλητών.
• Έχει (επί)γνωση των προϋποθέσεων που απαιτούνται για την εφαρμογή των στατιστικών μεθόδων που επιλέγει καθώς και της αναγκαιότητας ελέγχου των προϋποθέσεων αυτών.
• Μπορεί να ελέγχει τις προϋποθέσεις που απαιτούνται για την εφαρμογή των στατιστικών μεθόδων που επιλέγει και αν αυτές δεν ικανοποιούνται μπορεί να επιλέγει εναλλακτικές μεθόδους.
• Μπορεί να ερμηνεύει σωστά τη στατιστική σημαντικότητα.
• Μπορεί να διατυπώνει συμπεράσματα για στοχαστικά φαινόμενα και πειράματα και να τα ερμηνεύει σωστά και με όρους του φυσικού προβλήματος και όχι κατ’ ανάγκη με χρήση στατιστικής ορολογίας.
• Έχει (επί)γνωση της αβεβαιότητας (και του μεγέθους της) που αναπόδραστα εμπεριέχεται στα συμπεράσματα που αφορούν στοχαστικά φαινόμενα και πειράματα.
• Μπορεί να κρίνει και να αξιολογεί ισχυρισμούς και συμπεράσματα που βασίζονται σε πειραματικά ή δειγματοληπτικά δεδομένα.
• Μπορεί να χρησιμοποιεί κατάλληλο λογισμικό (στατιστικά πακέτα και κατάλληλα προγραμματιστικά περιβάλλοντα όπως αυτό της γλώσσας R) για την περιγραφή και τη στατιστική ανάλυση και επεξεργασία πειραματικών ή δειγματοληπτικών δεδομένων.
• Έχει γνώση των θεμάτων δεοντολογίας και ηθικής που σχετίζονται με τη συλλογή και χρήση δεδομένων και τη δημοσιοποίηση των συμπερασμάτων που εξάγονται από αυτά.