COURSE LAYOUT

1. GENERAL

SCHOOL	APPLIED ECONOMICS AND SOCIAL SCIENCES				
DEPARTMENT	AGRICULTURAL ECONOMY AND RURAL DEVELOPMENT				
STUDY LEVEL	Undergraduate				
COURSE CODE	105	SEMESTER 1 st			
COURSE TITLE	STATISTICS (OBLIGATORY)				
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS		ECTS
Lectures		4		4	
COURSE TYPE	Infrastructure/ General knowledge/ Skills development				
PREREQUISITES					
LANGUAGE	Greek				
IS THE COURSE OFFERED	Yes (in Greek)				
forERASMUS STUDENTS?					
COURSE WEB PAGE					

2. LEARNING OUTCOMES

Learning Outcomes

After this course, the student is expected to be able to:

- distinguish stochastic and deterministic phenomena and experiments
- using enumeration methods and basic probability tools
- apply simple probability calculus
- recognize the practical value and importance of probabilities in the understanding of stochastic phenomena and experiments
- describe and summarize data
- translate a research question into a statistical hypothesis when given a data group and the type of experimental design or sampling procedure
- apply estimation and testing methods in order to make data-based decisions
- identify the selected method's assumptions and keep in mind that it is required to apply checks for them
- comprehend and interpret correctly the statistical significance
- interpret results correctly, effectively, and in context without relying on statistical jargon
- comprehend the notion of uncertainty which is always contained in statistical inference
- critique data-based claims and evaluate data-based decisions
- complete a research project that employs simple statistical inference comply to ethical issues.

General Competenses

1) Retrieve, analyze and synthesize data and information, with the use of necessary technologies.

- 2) Adapt to new situations.
- 3) Make decisions.
- 4) Work autonomously.
- 5) Create new research ideas.

6) Advance free, creative and inductive thinking.

3. COURSE CONTENT

1) Statistical approach: a brief overview.

- 2) Useful counting rules (multiplication principle, permutations, k-permutations, combinations).
- 3) Practical notion of probability; basic probability tools.
- 4) Conditional probability (multiplication rule; law of the total probability; Bayes theorem); Independence.
- 5) Random variables (cumulative distribution function; discrete and continuous random variables; probability function; probability density function; mean and variance).
- 6) Useful discrete distributions (Bernoulli; Binomial; Poisson).
- 7) Useful continuous distributions (Normal; χ^2 ; t and F).
- 8) Central limit theorem.
- 9) The role of probability in statistics.
- 10) Descriptive statistics (frequency table; numerical descriptive measures; barchart; piechart; box plot; histograms).
- 11) Sampling distributions.
- 12) Estimation; point estimation (properties of an estimator); interval estimation (confidence intervals for a (difference of) population mean (s) or proportion (s));
- 13) Testing hypotheses for a (difference of) population mean (s) or proportion (s));
- 14) Goodness-of-fit test; Chi-Square test of independence.
- 15) Analysis of variance (single-factor ANOVA; two-factor ANOVA).

4. TEACHING and LEARNING METHODS - Evaluation

TEACHING METHOD	Live, face to face teaching in the classroom*		
	*Due to the special circumstances (COVID-19),		
	synchronous distance teaching can be applied and		
	educational material for asynchronous distance		
	teaching has been uploaded in the Open e-class		
	platform.		
USE OF INFORMATICS and	Educational material, updates and announcements		
COMMUNICATION TECHNOLOGIES	available via Open e-class platform.		
TEACHING ORGANISATION	Activity	Work Load (hours)	
	Lectures	52 hours	
	Individual study	48 hours	
	Total contact hours and	100 hours	
	training(25 hours per ECTS)	(5 ECTS)	

STUDENTS EVALUATION	Written examination of different difficulty, based on the lectures offered, containing:	
	- Problems and/or exercises.	
	- Comprehension questions.	

5. BIBILIOGRAPHY

- 1. Παπαδόπουλος, Γ. Κ., Εισαγωγή στις Πιθανότητες και τη Στατιστική, Πανεπιστημιακές Σημειώσεις, Έκδοση Γ.Π.Α., 2013.
- 2. Κουνιάς, Σ., Κολυβά-Μαχαίρα, Φ., Μπαγιάτης, Κ. και Μπόρα-Σέντα, Ε., *Εισαγωγή στη Στατιστική*, Εκδόσεις Χριστοδουλίδη, Θεσσαλονίκη
- 3. Κούτρας, Μ. Β., Εισαγωγή στις Πιθανότητες-Θεωρία και Εφαρμογές, Εκδόσεις Σταμούλη, 2002.
- 4. Larsen, R. J. and Marx, M. R., *An Introduction to Mathematical Statistics and its Applications*, Pearson Prentice Hall, Fourth Edition, 2006.
- 5. Zar, J.H., *Biostatistical Analysis*, Prentice Hall, Fifth Edition, 2010.