COURSE OUTLINE

1. GENERAL

SCHOOL	APPLIED ECONOMIC AND SOCIAL SCIENCES			
ACADEMIC UNIT	AGRIBUSINESS AND SUPPLY CHAIN MANAGEMENT			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	5206		SEMESTER	2nd
COURSE TITLE	CALCULUS II			
INDEPENDENT TEACHING ACTIVITIES			WEEKLY TEACHING HOURS	CREDITS
		Lectures	4	5
COURSE TYPE	General Background			
PREREQUISITECOURSES	NO			
LANGUAGE OF INSTRUCTION and EXAMINATIONS	Greek			
IS THE COURSE OFFERED forERASMUS STUDENTS?	YES (in English)			
COURSE WEBSITE(URL)	https://oeclass.aua.gr/eclass/courses/4855/			

2. LEARNING OUTCOMES

Learning Outcomes

The aim of the course is:

To introduce students to the fundamentals of Linear Algebra, functions of many variables and ordinary differential equations which are relevant to economy and management.

Upon successful completion of the course, the student will be able to:

- Distinguishes the basic principles of Linear Algebra.
- Understand and use the mathematical models.
- Apply the mathematical models in order to describe economic and managerial phenomena.
- Apply the mathematical models in order to comprehend and foresee economic trends.
- Understands the basic "tools" for dealing with theoretical and practical problems that arise in the modern business environment.

General Competences

Adapting to new situations
Decision-making
Working independently
Teamwork

Working in an international environment

Working in an interdisciplinary environment
Production of new research ideas Teamwork

Project planning and management
Respect for difference and multiculturalism
Respect for the natural environment
Showing social, professional, and ethical responsibility and sensitivity to gender issues
Criticism and self-criticism

Production of free, creative and inductive thinking

3. SYLLABUS

1. Matrices and Algebra of Matrices. Line Table, Column Table, Square Tables, Triangular Tables, Tiered Tables.
2. Transpose of a Matrix. Determinants and properties of Determinants.
3. Inverse of a Matrix. Inverse Matrix Method. Cramer's Rule for nxn Linear Systems. Gauss-Jordan method. Characteristic polynomial of a Matrix, Cayley-Hamilton Theorem.
4. Systems of Linear Equations. Elimination for Solving Systems of Linear Equations.
5. Vector Spaces. Linear Dependent and Independent Vectors.
6. Basis and Dimension of a Vector Space. Vector Subspaces.
7. Linear Mappings. Eigenvalues and Eigenvectors.
8. Applications to problems of Economy and Management.
9. Functions of many variables, Partial derivatives.
10. Optimization of functions of many variables with and without constraints.
11. Multiple integrals.
12. Introduction to ordinary differential equations, differential equations of first and higher order.
13. Mathematical modeling of problems related to economy and management and methods to solve such problems.

A combination of teaching and learning methods will be used, aiming at the active participation of the students and the practical application of the thematic units under examination; there will also be lectures using audiovisual media, discussions, and analyses of case studies on real business issues, experiential (group) activities, as well as projections of relevant videos. The students will also undertake an individual or group project. Furthermore, articles, audiovisual lecture materials, web links/addresses, useful information, case studies and exercises for further practice are posted in digital form on the AUA Open e-Class platform.
4. TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face -to- face, Distance learning
USE OF INFORMATION and	• Support of the learning process through the University's
COMMUNICATIONS TECHNOLOGY	AUA Open eClass platform (integrated e-Course Management System)
	• Support of lectures using presentation software • Use of audiovisual material - Use of web applications
	Communication with students: face to face at office hours, email, eclass platform

5. ATTACHED BIBILIOGRAPHY

Suggested bibliography:

- Mapía Maúpף, Oıкоvонıка́ MaӨпцатıка́, Екסóбعıৎ Протоито́ৎ, 2013

 Екסóбعıऽ'Evaбтроv, 2011

 Toótрац, 2018

- T. M. Apostol, Calculus V. 2, John Wiley and Sons, 1969

Related academic journals:

- Mathematical Programming.
- Journal of Functional Analysis.
- Linear Algebra and its Applications.
- Archiv der Mathematik.

