COURSE OUTLINE

1. GENERAL

SCHOOL	ENVIRONMENT AND AGRICULTURAL ENGINEERING			
ACADEMIC UNIT	NATURAL RESOURCES AND AGRICULTURAL ENGINEERING			
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	57 SEMESTER 7th			
COURSE TITLE	SOIL MECHANICS – SOIL EROSION			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits		WEEKLY TEACHING HOURS	CREDITS	
	lectures 3		3	
Laboratory exercises		2	2	
		5	5	
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	Special background, Specialised general knowledge Skills development			
PREREQUISITE COURSES:	No			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	No			
COURSE WEBSITE (URL)				

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The course aims to provide basic knowledge on the physical and mechanical properties of the soils under load and the comprehension of erosion mechanisms. The latter will provide the students with the necessary skills for estimating soil strength under different conditions and assess potential failures in infrastructure works and agricultural buildings, allowing for prevention measures. Students will assess the soil properties and the foundation conditions based on the analysis of the granulometry and humidity factors and particularly assessing for the liquefaction potential. Students are expected to be familiar with the relationship between stress and strain, with the factors that contribute to failure and to assess potential failure from overloads (buildings) or lateral loading (sliding). They will learn key tests and methodologies applied in the field and the labs. Lectures will be focused also on the Hellenic Seismic Code and Eurocode 8, regarding the active faults, the soil categories and the building types. Students will be able to assess the soil categories and the impacts of active faults that define planning regulations per type of building.

In this course students are expected to synthesize the knowledge obtained from other courses such as Geology-Geomorphology, Soil sciences and Strength of materials to assess soil conditions and adjust their planning based and the seismic code and building regulations.

General Competences Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?				
Search for, analysis and synthesis of data and information, with the use of the necessary technology Adapting to new situations Decision-making Working independently Team work Working in an international environment Working in an interdisciplinary environment Production of new research ideas	Project planning and management Respect for difference and multiculturalism Respect for the natural environment Showing social, professional and ethical responsibility and sensitivity to gender issues Criticism and self-criticism Production of free, creative and inductive thinking Others			
Respect for the natural environment Working in an interdisciplinary environment				
Decision-making				
Project planning and management				
Search for, analysis and synthesis of data and information, with the use of the necessary technology				

3. SYLLABUS

1. Basic terminology in Soil Mechanics – Soil formation, Autochonous soils, weathered rocks, Peat, alluvial deposits and fans, Geological background, stratigraphy and sedimentological processes, the importance of granulometry and humidity in soil mechanics, in situ and laboratory sampling methods, Atterberg limits

2. Stresses and mechanical properties of the soils, cohesion, friction, Mohr cycles, effective stress and pore pressure, Total stress, capillary rise above the water table, effective stress above the water table and the role of vegetation,

3. Bearing capacity, Shear strength, Stress and Strain, Mohr-Coulomb failure criterion, Stress paths, Unconfined pressure, triaxial unconsolidated undrained test, Standard Penetration Test,

4. Definition of the geological and geotechnical model – Stratigraphy – Geological and Geotechnical maps, Hellenic Seismic Code and Eurocode 8, Active Faults, seismic risk categories, Soil categories, building categories, liquefaction risk, planning permits and regulations

B. EROSION

- 1. Forms and types of soil erosion
- 2. Surface erosion: 2.1. Mechanism of surface erosion, 2.2 Types of surface erosion
- 3. Mass movements: 3.1 Creep of saturated soil, 3.2 Creep of soil, 3.3 Landslides
- 4. Genetic and regulatory factors of surface erosion 4.1. Rain height, 4.2 Rain intensity,
- 4.3 Rain frequency, 4.4. Vegetation, 4.5 Slope and slope length, 5.6 Soil
- 5. Universal Soil Loss Equation for surface erosion.
- 6. Protection measures for erosion 6.1 bio-cultivation techniques, 6.2 Technical anti erosion works: terraces, absorption networks, diversion networks
- 7. Wind erosion

Laboratory exercises	
Lab 1	Granulometric analysis and its importance in soil mechanics
Lab 2	Cohesion, Atterberg limits, Geotechnical drills
Lab 3	Effective and Full Stress, Mohr cycles, Mohr-Coulomb Failure

	criterion
Lab 4	Standard Penetration Test
Lab 5	Hellenic Seismic Code and active faults, analysis of geological maps, active faults identification and fault type characterization, maximum expected earthquake magnitude and surface runture parameters
Lab 6	Hellenic Seismic Code and Eurocode 8, Soil categories, regulations and permits for agricultural and typical building categories
Lab 7	Characteristics of Rainfall and calculation of unit energy of rain part
Lab 8	Calculation of total rain energy
Lab 9	Application of USLE (Universal Soil Loss Equation)
Lab 10	Determination and design of a protection network based on the Soil Loss Equation
Lab 11	Design of slope protection network in Western Greece
Lab 12	Determination of indices for aggregate stability in water

4. TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	Face to Face contact in classroom			
Face-to-face, Distance learning, etc.	A lecture will be held at the soil mechanics room at the			
	Mineralogy-Geology laboratory			
USE OF INFORMATION AND	PowerPoint presentations			
COMMUNICATIONS TECHNOLOGY	Using internet applications			
Use of ICT in teaching, laboratory education,				
	Activity Compoter workload			
The manner and methods of teaching are		36		
described in detail.	Laboratory exercises	24		
Lectures, seminars, laboratory practice, fieldwork study and analysis of hibliography	Homework	65		
tutorials, placements, clinical practice, art	Homework			
workshop, interactive teaching, educational				
etc.				
The student's study hours for each learning activity are given as well as the hours of non-				
directed study according to the principles of				
the ECTS	Course total	125		
STUDENT PERFORMANCE				
EVALUATION				
Description of the evaluation procedure	Written theory and laboratory	exame (100%) including:		
Language of evaluation, methods of				
evaluation, summative or conclusive, multiple	- snort-answer questions			
open-ended questions, problem solving,	- open-ended question	S		
written work, essay/report, oral examination,	 problem solving and laboratory exercises 			
public presentation, laboratory work, clinical examination of patient art interpretation				
other				
Specifically defined avaluation within an				
given, and if and where they are accessible to				
students.				

5. ATTACHED BIBLIOGRAPHY

- Suggested bibliography:

1) Soil mechanics (2014). Graham Barnes ISBN-13: 9789604615780, 584p.

- Related academic journals:

- 1) Engineering Geology
- 2) Soil Dynamics and Earthquake Engineering
- 3) Soil science
- 4) Geoderma
- 5) Catena
- 6) Soil and Tillage research