COURSE OUTLINE

(1) GENERAL

SCHOOL	AGRICULTURAL ENGINEERING AND ENVIRONMENTAL SCIENCES				
ACADEMIC UNIT	Natural Resources Management & Agricultural				
	Engineering				
LEVEL OF STUDIES	BACHELOR OF SCIENCE				
COURSE CODE	3650	3650 SEMESTER 1			
COURSE TITLE	INTRODUCTION TO CALCULUS AND LINEAR ALGEBRA				
INDEPENDENT TEACHI	ACHING ACTIVITIES		WFFKLY		
if credits are awarded for separate cor	f credits are awarded for separate components of the course, e.g.		TEACHING		CREDITS
lectures, laboratory exercises, etc. If the	tures, laboratory exercises, etc. If the credits are awarded for the		HOURS		
whole of the course, give the weekly teaching hours and the total credits		1	-	1	
			4		4
Add rows if necessary. The organisation of teaching and the teaching					
methods used are described in detail at (d).					
COURSE TYPE	Background and Skills development				
general background,					
special background, specialised general knowledge_skills development					
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION and	Greek				
EXAMINATIONS:					
IS THE COURSE OFFERED TO	Non				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)					

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

After successful completion of this course, students are expected to be able to:

- Use and apply definitions and concepts from calculus and linear algebra in a purely mathematical and/or in an applied context.
- Use and apply mathematical knowledge and methodology to solve basic mathematical problems in the life, biological and technological sciences using a systematic approach.

• Enhance their ability of critical thinking through the verification of the results. Correctly interpret the results in terms of the problem that was modeled mathematically

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and information,	Project planning and management
with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others

1) Adapt to new situations.

- 2) Make decisions.
- 3) Work independently.
- 4) Create new research ideas.
- 5) Advance free, creative and inductive thinking.

(3) SYLLABUS

1) FUNCTIONS OF A SINGLE VARIABLE:

Cartesian coordinates and lines, functions of a single variable; limits and continuity;

derivatives; maxima and minima; first and second derivative tests.

2) ELEMENTS OF LINEAR ALGEBRA:

Euclidean spaces; matrices; rank of a linear map/matrix; systems of linear equations.

3) SEQUENCES - INTEGRALS:

Sequences. Area-definite integral; the fundamental theorem of calculus; the substitution rule; techniques and applications of integration.

4) DIFFERENTIAL EQUATIONS:

Ordinary differential equations; linear equations of first order; separable equations; applications of first order equations.

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Educational material, updates and announcements available on the web.		
TEACHING METHODS	Activity	Semester workload	
The manner and methods of teaching are described in detail. Lectures, seminars, laboratory practice,	Lectures	52	
	Homework	13	
fieldwork, study and analysis of bibliography,	Independent study	35	
tutorials, placements, clinical practice, art		·	

workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc. The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS	Course total	100
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other Specifically-defined evaluation criteria are given, and if and where they are accessible to students.	Written examination with and/or multiple choice qu lectures offered, containin - Problems and/or exercise - Comprehension question	open, short answer lestions, based on the lg: es. 15.

(5) ATTACHED BIBLIOGRAPHY

1. Ν. Μυλωνάς, Χ. Σχοινάς, Γ. Παπασχοινόπουλος, Λογισμός Συναρτήσεων μιας Μεταβλητής και Γραμμική Αλγεβρα, Εκδοσεις ΤΖΙΟΛΑ, 2016.

2. Σακκαλής, Π. Απειροστικός Λογισμός και Πραγματική Άλγεβρα. Εκδόσεις Τυπωθήτω, Γ έκδοση, Σεπτέμβριος 2008.

3. Finney R. L., Weir W. D. A., Giordano F. R. Απειροστικός Λογισμός. Πανεπιστημιακές εκδόσεις Κρήτης, 1^H/2012.