COURSE OUTLINE

1. GENERAL

SCHOOL	SCHOOL OF ENVIRONMENT AND AGRICULTURAL			
	ENGINEERING			
ACADEMIC UNIT	DEPARTMENT OF NATURAL RESOURCES DEVELOPMEN AND AGRICULTURAL ENGINEERING			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	1555	SEMESTER 5 th		
COURSE TITLE	Soil Physics			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the			WEEKLY TEACHING HOURS	G CREDITS
whole of the course, give the weekly teach	ching nours and the total credits			
Theory: Lectures		3		
Laboratory:			2	
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	General knowledge, Scientific Area, Skills development			
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION	Greek			
and EXAMINATIONS:				
IS THE COURSE OFFERED TO	Yes (in English)			
ERASMUS STUDENTS				
COURSE WEBSITE (URL)				

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The purpose of the course is to understand soil physical properties, the methods of determining them in the laboratory and in the field, as well as the laws of water dynamics in the soil and to use the above for the purpose of the sustainability of soils and the plants that grow in them.

Upon successful completion of the course, the student will be able to:

•Understand the relationships between mass and volume of the three soil phases, the concept of moisture per mass and volume and be able to calculate them after successful sampling.

•Understand the physical properties of the solid phase and calculate them after successful sampling.

•Understand the properties of the liquid phase as well as the characteristics and mechanisms of the Statics of water in the various soil types.

•Understand the Characteristic Moisture Curve, the methods of its determination in

the laboratory and in situ and learn to calculate the available and useful moisture to use them in planning and application of irrigations. •Understand the phenomenon of hysteresis in porous media. • Understand the concept of soil water potential and hydraulic head. • Understand Darcy's law for the flow of water in porous media and learn to apply it in columns and in situ both, for saturated and unsaturated soil. • Understand the concept and importance of hydraulic conductivity, its relation to moisture and pressure head and learn to determine it in the laboratory and in situ for any moisture conditions. • Learn the methods of determining the hydraulic properties of soils in the laboratory and in the field, to practice their application and the use of related software (RETC). • Understand the concept and importance of diffusivity and its relation to humidity. • It applies the continuity equation and the general flow equations for the flow of water in porous media in any wetted state. • To construct and use the water and salt balances of an irrigated soil profile. **General Competences** Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim? Search for, analysis and synthesis of data and Project planning and management information, with the use of the necessary technology Respect for difference and multiculturalism Adapting to new situations *Respect for the natural environment* Decision-making Showing social, professional and ethical responsibility and Working independently sensitivity to gender issues Team work Criticism and self-criticism Production of free, creative and inductive thinking Working in an international environment Working in an interdisciplinary environment Production of new research ideas Others... 1. Search, Analysis and Synthesis of Data and Information, using the Necessary Technologies 2. **Decision-making** 3. Autonomous Work

- 4. Project planning and management
- 5. Respect for the natural environment.

3. SYLLABUS

Mass and volume relationships of the three soil phases.

• Moisture - methods of expressing and measuring soil moisture.

• Solid phase, Physical properties of soils-bulk density, density of solids, porosity, degree of saturation, root layer depth. Aggregates and their properties.

• Liquid phase of the soil. Statics of soil water - Pressure head.

• Mechanisms of retention-removal of water from the soil, Soil – Moisture Characteristics curve - hysteresis-Determination of Soil Moisture Characteristic curve in the laboratory and in the field, available and useful soil moisture.

• Dynamics of soil water. (Potential - hydraulic head, Darcy's Law - hydraulic conductivity - relationships $K(\Theta)$ and K(h) - methods of determining hydraulic properties of soils).

• Use of related software (RETC) to calculate the hydraulic properties of soils.

• Diffusivity- continuity equation- general flow equations.

• Balances of water and salts of the soil profile.

4. TEACHING and LEARNING METHODS - EVALUATION

DELIVERY	In classroom and in laboratory (face-to-face)				
Face-to-face, Distance learning, etc.					
USE OF INFORMATION AND	Exploitation of Information and Communication				
COMMUNICATIONS TECHNOLOGY	Technologies in teaching, in laboratory training and in				
Use of ICT in teaching, laboratory education,	communication with students.				
communication with students	Use of dedicated software.				
	Communication with students via open eclass platform and e				
	mail.				
TEACHING METHODS	Activity	Semester workload			
The manner and methods of teaching are	Lectures	65 hours			
described in detail.	Laboratory work and case	47 hours			
Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography,	studies	in nours			
tutorials, placements, clinical practice, art	Exercises and	13 hours			
workshop, interactive teaching, educational		13 110013			
visits, project, essay writing, artistic creativity,	presentations				
etc.					
The student's study hours for each learning					
activity are given as well as the hours of non-					
directed study according to the principles of					
the ECTS					
	Course total	125			
STUDENT PERFORMANCE	I. Final written exam (50%) which includes:				
EVALUATION	Theory questions (multiple choice and short answer) and problem solving.				
Description of the evaluation procedure					
Language of evaluation, methods of evaluation, summative or conclusive, multiple	II. Final written exam (50%) concerning the				
choice questionnaires, short-answer questions,	subjects of laboratory exercises and laboratory work. Marking Scale: 0-10. Minimum Passing Mark: 5.				
open-ended questions, problem solving,					
written work, essay/report, oral examination,					
public presentation, laboratory work, clinical					
examination of patient, art interpretation, other					
omer					
Specifically-defined evaluation criteria are					
given, and if and where they are accessible to					
students.					

5. ATTACHED BIBLIOGRAPHY

Proposed literature -Scientific journals

Soil Science Soil Science Society of America Journal Vadose Zone Journal Water Resources Research Agricultural Water Management Soil research Soil and Tillage Research Water Resources Management, Geoderma Catena Journal of Hydrology