COURSE OUTLINE

1. GENERAL

SCHOOL	Environment and Agricultural Engineering			
ACADEMIC UNIT	Natural Resources Management and Agricultural			
	Engineering			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	188SEMESTER8th		8 th	
COURSE TITLE	Land Reclamation Projects			
INDEPENDENT TEACHI				
if credits are awarded for separate co				
lectures, laboratory exercises, etc. If				
the whole of the course, give the wee total credi				
	Theory 3		3	
Laboratory		2	2	
TOTAL:		5	5	
COURSE TYPE	special background, skills development			
general background,				
special background, specialised				
general knowledge, skills				
development				
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION and	Greek			
EXAMINATIONS:	GIEEK			
IS THE COURSE OFFERED TO	YES (In English)			
ERASMUS STUDENTS				
COURSE WEBSITE (URL)				

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
 Guidelines for writing Learning Outcomes

This course is an application of previous knowledge in the scientific field of Hydraulic Engineering. It aims to introduce students to the design and management of major hydraulic projects in rural areas. Students will learn to appreciate the irrigation needs of the study area, to choose the characteristics of the appropriate collective work specific to each case and to design a project that will gradually adapt to the evolving needs of the irrigation perimeter.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and sensitivity to
Working independently	gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking

Working in an interdisciplinary environment Production of new research ideas

Others...

- Search, analysis and synthesis of data and information with the use of the required technologies
- Team Work
- Production of new research ideas
- Respect for the natural environment

3. SYLLABUS

Introduction. Head works (dams, pumping stations, drillings). Transmission projects (pipelines and canals). Distribution projects (gravity networks and networks under pressure). Plans, designs and construction. Management of irrigation systems (operation, maintenance, modernization). Environmental impacts of irrigation projects. General principles for the assessment of irrigation networks.

4. TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	The teaching methodology employed in the classroom and in the laboratory		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Specialized software e-class platform		
TEACHING METHODS The manner and methods of teaching are described in detail.	Activity	Semester workload (hours)	
Lectures, seminars, laboratory practice, fieldwork,	Lectures	36	
study and analysis of bibliography, tutorials, placements, clinical practice, art workshop,	Team project	46	
interactive teaching, educational visits, project, essay writing, artistic creativity, etc.	Study at home	43	
The student's study hours for each learning activity are given as well as the hours of non-directed study according to the principles of the ECTS	TOTAL	125	
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure	I. Final written theory examination (50%) comprising: - Multiple choice questions - Open questions		
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work,	- Problem solving		
essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	II. Laboratory Grade (50%) - Presentation of team project		
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.			

5. ATTACHED BIBLIOGRAPHY

- Journal of Irrigation and Drainage Engineering, ASCE
- Journal of Hydraulic Engineering, ASCE