COURSE OUTLINE

1. GENERAL

SCHOOL	Environment and Agricultural Engineering			
ACADEMIC UNIT	Natural Resources Management and Agricultural Engineering			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	172 SEMESTER 5 th			
COURSE TITLE	Fluid mechanics – Applied hydraulics			
INDEPENDENT TEACHING ACTIVITIES if credits are awarded for separate components of the course, e.g. lectures, laboratory exercises, etc. If the credits are awarded for the whole of the course, give the weekly teaching hours and the total credits			WEEKLY TEACHING HOURS	CREDITS
Theory		Theory	3	3
Laboratory		Laboratory	2	2
TOTAL:		5	5	
COURSE TYPE general background, special background, specialised general knowledge, skills development	general backgro	ound		
PREREQUISITE COURSES:	None			
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS	YES (In English))		
COURSE WEBSITE (URL)				

2. LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
 Guidelines for writing Learning Outcomes

The course is a basic one in the scientific field of Natural Resources Management. It aims to introduce students to the basic concepts of Fluid Mechanics as the general properties of fluids, hydrostatics and hydrodynamics.

Second aim of the course is the understanding of Applied Hydraulics importance in the management of water resources and environmental protection as well as in the design of the related projects.

Upon successful completion of the course the student will be able to:

• Calculate the basic parameters in hydrostatics problems.

- Study the flow in pipes and open channels.
- Understand the following lessons of hydraulic design, land improvement, irrigation drainage systems and hydrology

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?

Search for, analysis and synthesis of data and	Project planning and management
information, with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and sensitivity to
Working independently	gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others

- Search, analysis and synthesis of data and information with the use of the required technologies
- Independent Work
- Production of new research ideas
- Respect for the natural environment

3. SYLLABUS

Basic knowledge. Fluid Properties. Newtonian and non-Newtonian fluids, basic mathematical tools: vectors and tensors - fields.

General Properties of Fluids: Homogeneity, isotropy, Viscosity, Ideal and real fluids, Compressibility, Surface Tension. Pressure. Pressure in ideal fluids. Similitude and dimensional analysis. Compressible fluids: basic flow concepts.

Hydrostatics: Hydrostatic pressure, General equations of hydrostatics, pressure difference between two points. Pressure – depth relation. Practical pressure expression units. Measurement of hydrostatic pressure, pressure gauges, pipe pressure resistance, minimum thickness determination of metal tubes.

Hydrodynamics: General. Basic conservation laws of the fluid flow. Continuity equation, conservation of mass, conservation of momentum and energy. Ideal fluid motion equations. The theorem of Bernoulli. Applications of the theorem of Bernoulli (venturi-meter, Pitot tube, the Torricelli type). The theorem of motion quantity. Draining holes and valves. Weirs. Flow in closed conduits under pressure, flow items in closed conduits - Raynolds number, laminar and turbulent flow in closed conduits, boundary layer. Siphon flow. Load losses in closed conduits. Free surface flow. Critical flow. Definition of specific energy E, Specific Energy graphic presentation, flow types and critical flow. Equations of critical flow. Hydraulic jump. Typical applications of Critical flow in measurements.

Computational Fluid Mechanics: Applications and use of computational methods for the study of the flow. Typical examples (flow in closed conduit, flow behind obstacle), display of these examples through numerical simulations. Brief overview of computational methods for flow analysis.

4. TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	The teaching methodology employed in the classroom involves active student participation through interactive question and answer sessions.		
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Specialized software e-class platform		
TEACHING METHODS The manner and methods of teaching are described in detail	Activity	Semester workload (hours)	
Lectures, seminars, laboratory practice, fieldwork, study and analysis of bibliography, tutorials,	Lectures	39	

placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc. The student's study hours for each learning activity	Exercises that focus on design application methodologies and laboratory	26	
are given as well as the hours of non-directed study	monsuroments		
according to the principles of the ECTS	measurements		
	Small individual	10	
	training work		
	Theory study	50	
	TOTAL	125	
STUDENT PERFORMANCE	I. Final written theory examination (50%) comprising:		
EVALUATION	- Multiple choice questions		
Description of the evaluation procedure	- Open questions		
Language of evaluation, methods of evaluation,	- Problem solving		
summative or conclusive, multiple choice questionnaires, short-answer questions, open-ended questions, problem solving, written work	- Theory elements		
essay/report, oral examination, public	II. Laboratory Grade (50%)		
presentation, laboratory work, clinical examination	-Written final laboratory examination (40%) with		
of patient, art interpretation, other	numerical problems from laboratory exercises		
Specifically-defined evaluation criteria are given	- Individual exercises delivery (10%)		
and if and where they are accessible to students.	$= 1101 \times 100001 \text{ CACICISCS UCIIVELY (10.70)}$		

5. ATTACHED BIBLIOGRAPHY

Handbook of Applied Hydraulics, C.V Davis Editor in Chief, K. E. Sorensen, Co-Editor, Mc Graw-Hill Book Company.