Τίτλος (Ελλ.)	Τίτλος (Αγγλ.)	Υπεύθυνος	Διδάσκοντες	
Κυβερνοφυσικά Συστήματ και Ευφυείς Υποδομές	Cyber-Physical Systems and Smart Infrastructures	ΛΟΥΚΑΤΟΣ	ΛΟΥΚΑΤΟΣ, ΑΡΒΑΝΙΤΗΣ, ΠΡΟΣΚΕΚΛΗΜΕΝΟΙ ΕΙΣΗΓΗΤΕΣ	
Ποουνοσικό				

Περιγραφή

These lecture series are dedicated in communicating the fundamentals of Cyber-Physical Systems and Smart Infrastructures, with emphasis on their agricultural exploitation.

The areas being covered include but are not limited to:

Cyber-physical system basics. Methods for selecting the participating components. Automatic control fundamentals. Techniques for intercepting and respond to triggers from the natural and human-made physical world, like handling asynchronous events, parallel processes, scheduling and threads. Inter process communication. Incorporating machine learning functionality. Performance evaluation. Security issues. Experimentation with actual cyber-physical systems for agricultural purposes.

WEEK	Course Contents
1 ST	Defining the role of cyber-physical systems
2 ND	Selecting sensors, actuators, microcontrollers and network entities
3 RD	Automatic control fundamentals
4 TH	Intercepting and respond to signals from the natural and human-made physical world
5 TH	Handling time, synchronous and asynchronous events of diverse priority
6 TH	Parallel processing and threads
7 TH	Modelling states and context switching
8 TH	Interconnecting and communicating with different modules and systems
9 [™]	Incorporating intelligent functions for autonomous operation
10 TH	Evaluating the performance of the cyber-physical system
11 TH	Addressing security and ergonomics issues
12 TH	Custom agricultural robots as facilitators for the cyber-physical systems understanding
13 TH	Experimentation with emphasis on agricultural applications

Μέθοδος Αξιολόγησης

Assessment method: A combination of written exams and project assignments during the semester